
CSE 373 Spring 2006

Data Structures and Algorithms

Assignment #6

Due: Paper Assignment Wednesday May 31st in class
Due: Program Assignment Friday June 1st 11:00 am

This assignment will deal with graphs. In the programming part you will implement methods to find
the shortest paths from a vertex to all other vertices (Dijkstra’s algorithm) and to find the minimum
spanning tree of a graph (you have the choice of either Prim or Kruskal’s algorithm). You should start
with the first two paper problems that you don’t have to turn in. These two problems should be a
good warm-up for the programming part.

Paper Assignment

1. Problem R-13.14 (Don’t turn it in)

2. Problem R-13-17 (Don’t turn it in but note that this is part of the output you will have to generate
for the programming part).

3. Problem R-13-9

4. Give an algorithm in pseudocode that detects whether a directed graph has a cycle. Use the
adjacency list representation for graphs. (Of course you can have additional field(s) for each node in
addition to their name and pointers to successors.)

5. Give an algorithm that detects whether a directed graph is a forest, i.e., a set of one or more disjoint
trees. Use the adjacency list representation for graphs. (Of course you can have additional field(s) for
each node in addition to their name and pointers to successors.)

6. R-13-32 and R-13-33 (Recall the DFS and BFS that we did for topological sort)

Programming Part

Your input will be

• a set of vertices from the file vertex.txt. Each line of the file vertex.txt is a string of 3 characters
representing an airport (e.g., SEA, ORD etc.)

• a set of edges from the file edge.txt. Each edge in edge.txt is represented in 3 consecutive lines
namely, the first two lines being members of the vertex set, i.e., the names of airports, and the
third line a real number representing the distance between the two airports.

Your first task is to build an adjacency list structure for the undirected graph. Vertices
and edges are objects. The set implementations of vertices and edges are left to your choice but they
should be structures on which you can apply iterators (e.g., array, linked list, Array list). Each vertex
object points to its own incidence list. Each incidence list is itself a structure that should be iteratable.
Each object in the incidence list points to an edge object. Each edge object has pointers to the vertex
objects that it links as well as a distance component. See Figure 14.3 in your book for an illustration.

In the course of designing your program you might wish to add components to the objects such as
markers etc.

1



Your second task is to find the shortest paths from one airport, namely SEA, to all other

airports in vertex.txt. In addition, you should record the paths and their total distances.

To do that you should implement Dijkstra’s algorithm with the initial vertex being SEA. In order to test
your implementation of Dijkstra’s algorithm, you should provide a method pathLengthToDest(Vertex
dest) that prints answers to queries asking for the path and the length of the path from SEA to
the destination vertex (of course this method is called after you have run Dijkstra’s algorithm). For
example the call pathLengthToDest(DEF) should provide output like:

SEA ABC DEF 1386

where SEA, ABC, and DEF are airport names and the shortest path between SEA and DEF is a path
of length 2 of distance 1386 with an intermediate “stop” in ABC.

While finding shortest paths from SEA to all other airports is convenient for Seattle inhabitants, airlines
might have other criteria such as connecting all cities but with a minimum total distance. In other
words, they want to see a Minimum Spanning Tree(MST) of the graph.

Your third task is to build an MST of the graph. You can use either Kruskal or Prim’s algorithm.
Your output should be a list of the edges in the order they have been added to the MST as in:

SEA XYZ 1200

SEA ABC 422

ABC DEF 976

etc.

Implementation Notes

In the algorithms above, you will need to implement priority queues. Since the graph is rather sparse
and the number of vertices is small, a sorted linked list would work quite well. However, for extra

credit you can implement the priority queues using binary heaps, the best implementation for larger
graphs.

You should feel free to use Java’s ArrayList/Linkedlist. However you should implement your own
priority queues, i.e., do not use Java’s priority queue.

Files provided

In addition to vertex.txt and edge.txt you will be given a template (Java interfaces) for the methods
that you have to implement as well as some testing code for the adjacency list and priority queue.

2


