
CSE 373 Spring 2006

Data Structures and Algorithms

Assignment #4

Due: Paper Assignment Wednesday May 3rd in class
Due: Program Assignment Monday May 8th 11:00 am

This assignment will deal mostly with balanced BST’s. In the programming part you will implement
methods for splay trees. In the paper part, you will have problems on heaps (not BSTs, I know!), AVL
trees, and splay trees. It is recommended that you do the splay tree paper assignment (problem 7)
before the programming part.

Paper Assignment

(Heaps)
1. Problems R-8.16 and R-8.17. A 3-node heap should be sufficient for both cases.

2. Problem C-8.14 (in pseudo-code)

(AVL Trees)
3. Problems R-10.6 and R-10.7. Two sequences of the same 4 keys should be sufficient.

4. Given an AVL tree, prove that at most one rotation (either single or double) is required to balance
the tree for the Insert operation.

5. Given an AVL tree, show by example that more than one rotation might be necessary to keep the
tree balanced after the Delete operation.

(BST, AVL and Splay trees)
6. Problem R-10.20 (a), (d) and (e)

(Splay trees)
7. Problem R-10.21 (The final answer to each part will be posted soon; you are required to show all
steps leading to the final answers).

Programming Assignment

In this assignment you have to implement some basic Java methods for splay trees. The application
that you have to program is a little contrived. Splay trees are more advantageous when there are a
large number of nodes and the 80-20 rule (80% of the accesses are for 20% of the entries) is followed.
However, so that you don’t have to deal with huge data sets, we are going to limit the test file sizes.

For this application, each node in the tree has:

• A key (in this assignment the key will be a string of 7 characters; each character is a digit but
the point is that the key is “comparable to” other keys)

• A value (this will be a small positive integer as defined below)

• Three links, left, right and parent

In the first part of the assignment, a splay tree will be build from a file enroll.txt that contains student
numbers. This file is the concatenation of enrollments in several courses (this is taken from some old

1



course lists of mine, somewhat changed and all anonymity has been preserved). Each student number
is a string of 7 digits (e.g., 9703456), one per line of the file. The same student number can appear
several times in the file if s/he has been enrolled in several courses. The file terminates with a student
number of 0000000 that should not be entered in the splay tree.

Besides the size() and isEmpty() methods, in order to build the splay tree you should implement:

• find(k) which looks for the node in the tree with key k and if found returns the value x found in
the node. If find(k) fails, it should return the value 0. In the case of a successful find, splaying
should occur from the found node up to the root. If find fails, splaying should start at the last
node visited before the failure is detected.

• Insert(k) If there is no node in the tree with the key k, this node should be inserted and the value
field should be set to 1. Splaying should occur starting at the inserted node. If there is already
a node in the tree with the key k, the value field of that node is incremented by 1 and splaying
occurs as for a successful find.

• delete(k) (this will be useful for the second part of the assignment). If there is no node with key
k, the value 0 is returned and splaying proceeds like in the case of a failed find. If the node is in
the tree, its value is returned, it is deleted and splaying starts from the parent of the “deleted”
node. The meaning of “deleted” node is unambiguous when the node with key k has no children
or only 1 child. If it has 2 children, the “deleted” node is its inorder successor (see slide 18 in
Lecture on Splay trees).

• print() prints the contents of the tree, i.e., pairs (key,value) in inorder based on the keys. You
should print 10 pairs/line.

When you program the above methods, draw diagrams to be sure that you are writing the code you
intend to write. Use helper methods, for example for “zig-zig” and “zig-zag”.

In summary: build the tree according to the above specifications using enroll.txt as your input file
and output using print as indicated above. Note that you are allowed (encouraged) to use code from
Assignment #3, suitably modified to take into account the parent link.

For part two of this assignment you are given a second file, query.txt with the same format as
enroll.txt. You can assume that the number of entries in the query.txt file is small, say less than 15.

Your task is to build a list (in the ADT sense, the implementation is your choice) of the student
numbers in the query.txt file sorted by the values (number of courses) they have taken. Of course this
information is in the splay tree. If a student number exists in the query.txt file but not in the splay
tree (i.e., not in the enroll.txt file), you should still enter it in the list but with the value 0. When
a student number is found in the splay tree, it should be deleted from the tree following the splaying
instructions given above.

When all entries in query.txt have been processed you should print the sorted list of (student number,
courses) in descending order of the number of courses. In case of ties, the student with the smaller
student number should be listed first. (Here, code from Assignment #1 suitably modified could be
useful).

A template for this assignment, as well as the enroll.txt and query.txt files will be posted before the
week-end.

2


