
Shortest Paths

CSE 373
Data Structures

Shortest paths 2

Readings

• Reading Chapter 13
› Sections 13.5 to 13.7

Shortest paths 3

Recall Path cost ,Path length
• Path cost: the sum of the costs of each edge
• Path length: the number of edges in the path

› Path length is the unweighted path cost

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

4

2 2

2
3

2 2
3

length(p) = 5
cost(p) = 11

Shortest paths 4

Shortest Path Problems
• Given a graph G = (V, E) and a “source” vertex s

in V, find the minimum cost paths from s to every
vertex in V

• Many variations:
› unweighted vs. weighted
› cyclic vs. acyclic
› pos. weights only vs. pos. and neg. weights
› etc

Shortest paths 5

Why study shortest path
problems?

• Traveling on a budget: What is the cheapest
airline schedule from Seattle to city X?

• Optimizing routing of packets on the internet:
› Vertices are routers and edges are network links with

different delays. What is the routing path with
smallest total delay?

• Shipping: Find which highways and roads to
take to minimize total delay due to traffic

• etc.

Shortest paths 6

Unweighted Shortest Path
Problem: Given a “source” vertex s in an unweighted

directed graph
G = (V,E), find the shortest path from s to all vertices in

G

A

C

B

D

F H

G

E

Source

Only interested

in path lengths

Shortest paths 7

Breadth-First Search Solution

• Basic Idea: Starting at node s, find vertices
that can be reached using 0, 1, 2, 3, …, N-1
edges (works even for cyclic graphs!)

A

C

B

D

F H

G

E

Shortest paths 8

Breadth-First Search Alg.
• Uses a queue to track vertices that are “nearby”
• source vertex is s

Distance[s] := 0
Enqueue(Q,s); Mark(s)//After a vertex is marked once

// it won’t be enqueued again
while queue is not empty do

X := Dequeue(Q);
for each vertex Y adjacent to X do

if Y is unmarked then
Distance[Y] := Distance[X] + 1;
Previous[Y] := X;//if we want to record paths
Enqueue(Q,Y); Mark(Y);

• Running time = O(|V| + |E|)

Shortest paths 9

Example: Shortest Path length

A

C

B

D

F H

G

E

0

Queue Q = C

Shortest paths 10

Example (ct’d)

A

C

B

D

F H

G

E

0

Queue Q = A D E

1

1

1

Previous
pointer

Indicates the vertex is marked

Shortest paths 11

Example (ct’d)

A

C

B

D

F H

G

E

0

Q = D E B

1

1

1

2

Shortest paths 12

Example (ct’d)

A

C

B

D

F H

G

E

0

Q = B G

1

1

1

2

2

Shortest paths 13

Example (ct’d)

A

C

B

D

F H

G

E

0

Q = F

1

1

1

2

2

3 4

Shortest paths 14

Example (ct’d)

A

C

B

D

F H

G

E

0

Q = H

1

1

1

2

2

3

Shortest paths 15

What if edges have weights?

• Breadth First Search does not work anymore
› minimum cost path may have more edges than

minimum length path

A

C

B

D

F H

G

E

2 3

2 1

1

4
2

11

93

8

3

Shortest path (length)
from C to A:
C A (cost = 9)

Minimum Cost
Path = C E D A
(cost = 8)

Shortest paths 16

Dijkstra’s Algorithm for
Weighted Shortest Path

• Classic algorithm for solving shortest
path in weighted graphs (without
negative weights)

• A greedy algorithm (irrevocably makes
decisions without considering future
consequences)

• Each vertex has a cost for path from
initial vertex

Shortest paths 17

Dijkstra’s Algorithm

• Edsger Dijkstra
(1930-2002)

Shortest paths 18

Basic Idea of Dijkstra’s
Algorithm (1959)

• Find the vertex with smallest cost that has not
been “marked” yet.

• Mark it and compute the cost of its neighbors.
• Do this until all vertices are marked.
• Note that each step of the algorithm we are

marking one vertex and we won’t change our
decision: hence the term “greedy” algorithm

• Works for directed and undirected graphs

Shortest paths 19

Dijkstra’s Shortest Path
Algorithm

• Initialize the cost of s to 0, and all the rest of the
nodes to ∞

• Initialize set S to be ∅
› S is the set of nodes to which we have a shortest path

• While S is not all vertices
› Select the node A with the lowest cost that is not in S

and identify the node as now being in S
› for each node B adjacent to A

• if cost(A)+cost(A,B) < B’s currently known cost
– set cost(B) = cost(A)+cost(A,B)
– set previous(B) = A so that we can remember the path

Shortest paths 20

Example: Initialization

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 ∞

∞ ∞

∞

Pick vertex not in S with lowest cost.

∞ ∞

Cost(source) = 0 Cost(all vertices
but source) = ∞

Shortest paths 21

Example: Update Cost
neighbors

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

Cost(v2) = 2
Cost(v4) = 1

Shortest paths 22

Example: pick vertex with
lowest cost and add it to S

Pick vertex not in S with lowest cost, i.e., v4

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

Shortest paths 23

Example: update neighbors

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

Cost(v3) = 1 + 2 = 3
Cost(v5) = 1 + 2 = 3
Cost(v6) = 1 + 8 = 9
Cost(v7) = 1 + 4 = 5

Shortest paths 24

Example (Ct’d)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (v2) and update neighbors

9 5

Note : cost(v4) not
updated since already
in S and cost(v5) not
updated since it is
larger than previously
computed

Shortest paths 25

Example: (ct’d)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S (v5) with lowest cost and update neighbors

9 5
No updating

Shortest paths 26

Example: (ct’d)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (v7) and update neighbors

8 5

Shortest paths 27

Example: (ct’d)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

6 5

Pick vertex not in S with lowest cost (v7) and update neighbors

Cost(v6) = min (8, 5+1) = 6

Previous cost

Shortest paths 28

Example (end)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (v6) and update neighbors

6 5

Shortest paths 29

Data Structures
• Adjacency Lists

1
2
3
4
5
6
7

2 2
G

0
∞
∞
∞
∞
∞
∞

C
4 1

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

4 3 5 10
1 4 6 5
3 2 5 2
7 6

6 1

6 8

7 4

next
cost

adj

Priority queue for finding and deleting lowest cost vertex
and for decreasing costs (Binary Heap works)

P Q

previous cost priority queue pointers

Shortest paths 30

Priority Queue

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

∞ ∞
1

∞ ∞

2

5 7

3 6

0
2
∞
1
∞
∞
∞

C

1
4

2
5
3

Q
1
2
3
4
5
6
7

node number
1

2 3

54

index in heap

1

1

Before the update, but
after find min.,i.e., v1 and v4
have been “deletemin”

This is somewhat arbitrary
and depends when the
heap was first built

Shortest paths 31

Priority Queue

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 ∞
1

∞ ∞

2

5 7

3 6

0
2
3
1
∞
∞
∞

C

1
4

2
5
3

Q
1
2
3
4
5
6
7

node number
1

2 3

54

index in heap

1
4
1

update node 3
decrease
cost

Shortest paths 32

Priority Queue

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 ∞
1

∞ ∞

2

3 7

5 6

0
2
3
1
∞
∞
∞

C

1
2

4
5
3

Q
1
2
3
4
5
6
7

node number
1

2 3

54

index in heap

1
4
1

percolate up

Shortest paths 33

Time Complexity

• n vertices and m edges
• Initialize data structures O(n+m)
• Find min cost vertices O(n log n)

› n delete mins
• Update costs O(m log n)

› Potentially m updates
• Update previous pointers O(m)

› Potentially m updates
• Total time O((n + m) log n) - very fast.

Shortest paths 34

Correctness

• Dijkstra’s algorithm is an example of a greedy
algorithm

• Greedy algorithms always make choices that
currently seem the best
› Short-sighted – no consideration of long-term or global

issues
› Locally optimal does not always mean globally optimal

• In Dijkstra’s case – choose the least cost node,
but what if there is another path through other
vertices that is cheaper?

Shortest paths 35

THE KNOWN
CLOUD

G Next shortest path from
inside the known cloud

P

“Cloudy” Proof

• If the path to G is the next shortest path, the path to P must be
at least as long. Therefore, any path through P to G cannot be
shorter!

Source

Least cost node

Shortest paths 36

Inside the Cloud (Proof)

• Everything inside the cloud has the correct
shortest path

• Proof is by induction on the number of nodes
in the cloud:
› Base case: Initial cloud is just the source with

shortest path 0
› Inductive hypothesis: cloud of k-1 nodes all have

shortest paths
› Inductive step: choose the least cost node G

has to be the shortest path to G (previous slide).
Add k-th node G to the cloud

