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Reading

• Reading Chapter 13
› Sections 13.1 and 13.2
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What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of 
“graph”
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Graphs

• Graphs are composed of
› Nodes (vertices)
› Edges (arcs) node

edge
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Varieties

• Nodes
› Labeled or unlabeled

• Edges
› Directed or undirected
› Labeled or unlabeled
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Motivation for Graphs
• Consider the data structures we have 

looked at so far…
• Linked list: nodes with 1 incoming 

edge + 1 outgoing edge
• Binary trees/heaps: nodes with 1 

incoming edge + 2 outgoing edges
• B-trees: nodes with 1 incoming edge 

+ multiple outgoing edges
• Up-trees: nodes with multiple 

incoming edges +  1 outgoing edge
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Motivation for Graphs

• How can you generalize these data 
structures?

• Consider data structures for representing 
the following problems…
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Representing a Maze

S

Nodes = cells
Edges = door or passage

S

E

B

E
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CSE Course Prerequisites at 
UW

321143

142

322

326
341370

378

401

421Nodes = courses
Directed edge = prerequisite
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Representing Electrical 
Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor
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Program statements

x1=q+y*z
x2=y*z-q Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice
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Precedence
S1 a=0;
S2 b=1;
S3 c=a+1
S4 d=b+a;
S5 e=d+1;
S6 e=c+d;

3

1 2

6

5

4Which statements must execute before S6?
S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements
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Information Transmission in a 
Computer Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates
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Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on 
connecting highway

UW
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The Internet
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Isomorphism

Same number of vertices connected in the same way

Time complexity to test if 2 graphs are isomorphic? 
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Bipartite Graphs

Football 
Player

CSE 
Nerd

Melrose Place

Two disjoint 
sets of 
vertices. 
Edges link a 
vertex from 
one set to a 
vertex in the 
other set
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Planarity

Can the circuit be put onto the chip in one layer?
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Related Problems: Puzzles

Two problems:                                                   
1) Can you draw these without lifting your pen, 
drawing each line only once                                     
2)   Can you start and end at the same point.                 

A B C
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Sparsely Connected Graph

• n vertices
• n edges total
• Ring
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Densely Connected Graph

• n vertices total
• (n (n-1))/2  edges total (w/o self loops)
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In Between (Hypercube)

• n vertices
• log n edges between two vertices
• ½ n log n edges total

001 011

000 010

101 111

100 110
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0110

0000

0010
0111

0100
0011

0001 0101

In Between (Hypercube)

1000

1010

1011

1001

1110

1111

1101

1100

- 16 nodes
- 4 edges
btwn two nodes

-32 total edges

S: (16,8,16)
D: (16,1,120)

S: (32,16,32)
H: (32,5,80) 
D: (32,1,496)

S: (64,32,64)
H: (64,6,192) 
D: (64,1,2016)
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Neural Networks
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Colorings
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Four Color Conjecture

• is it true that any map can be colored using 
four colors in such a way that adjacent 
regions (i.e. those sharing a common 
boundary segment, not just a point) receive 
different colors (1852)?

• Many attempts at proof 
• Finally “solved” by computer program (1974)

› Still extremely complex….
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“We should mention that both our programs use only integer arithmetic, and 
so we need not be concerned with round-off errors and similar dangers of 
floating point arithmetic. However, an argument can be made that our ‘proof’ 
is not a proof in the traditional sense, because it contains steps that can 
never be verified by humans. In particular, we have not proved the 
correctness of the compiler we compiled our programs on, nor have we 
proved the infallibility of the hardware we ran our programs on. These have to 
be taken on faith, and are conceivably a source of error. However, from a 
practical point of view, the chance of a computer error that appears 
consistently in exactly the same way on all runs of our programs on all the 
compilers under all the operating systems that our programs run on is 
infinitesimally small compared to the chance of a human error during the 
same amount of case-checking. Apart from this hypothetical possibility of a 
computer consistently giving an incorrect answer, the rest of our proof can be 
verified in the same way as traditional mathematical proofs. We concede, 
however, that verifying a computer program is much more difficult than 
checking a mathematical proof of the same length.”
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Graph Definition

• A graph is a collection of nodes plus edges
› Linked lists, trees, and heaps are all special cases 

of graphs
• The nodes are known as vertices (node = 

“vertex”)
• Formal Definition: A graph G is a pair (V, E) 

where
› V is a set of vertices or nodes 
› E is a set of edges that connect vertices
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Graph Example
• Here is a graph G = (V, E)

› Each edge is a pair (v1, v2), where v1, v2 are vertices 
in V 

› V = {A, B, C, D, E, F}
E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED
F
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Directed vs Undirected 
Graphs

• If the order of edge pairs (v1, v2) matters, the graph is 
directed (also called a digraph): (v1, v2) ≠ (v2, v1) 

• If the order of edge pairs (v1, v2) does not matter, the 
graph is called an undirected graph: in this case, (v1, 
v2) = (v2, v1) 

v1
v2

v1 v2
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Undirected Terminology

• Two vertices u and v are adjacent in an 
undirected graph G if {u,v} is an edge in G
› edge e = {u,v} is incident with vertex u and vertex 

v
• The degree of a vertex in an undirected graph 

is the number of edges incident with it
› a self-loop counts twice (both ends count)
› denoted with deg(v)
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Undirected Terminology

A

B
C

ED
F

Degree = 3
Degree = 0

B is adjacent to C and C is adjacent to B(A,B) is incident
to A and to B

Self-loop
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Directed Terminology

• Vertex u is adjacent to vertex v in a directed 
graph G if (u,v) is an edge in G
› vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
› vertex v is the terminal (or end) vertex of (u,v)

• Degree
› in-degree is the number of edges with the vertex 

as the terminal vertex
› out-degree is the number of edges with the vertex 

as the initial vertex
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Directed Terminology

A

B
C

ED
F

In-degree = 2
Out-degree = 1

In-degree = 0
Out-degree = 0

B adjacent to C and C adjacent from B
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Handshaking Theorem

• Let G=(V,E) be an undirected graph with 
|E|=e edges

• Then
• Every edge contributes +1 to the degree of 

each of the two vertices it is incident with 
› number of edges is exactly half the sum of deg(v)
› the sum of the deg(v) values must be even

∑
∈

=
Vv
deg(v)2e
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Handshaking Theorem II

• For a directed graph:

∑ ∑ ==
Ginv ginv

evoutdvind )()(
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Graph ADT

• Nothing unexpected
› Build the graph (vertices, edges)
› Return the edges incident in(or out) of a vertex)
› Find if two vertices are adjacent etc..
› Replace …, Insert…Remove …

• What is interesting
› How to represent graphs in memory
› What representation to use for what algorithms
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• Space and time are analyzed in terms of:

• Number of vertices = |V|   and

• Number of edges = |E|

• There are at least two ways of representing 
graphs:

• The  adjacency matrix representation

• The  adjacency list representation

Graph Representations
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A     B     C     D     E     F

0      1      0      1      0     0     

1      0      1      0      0     0     

0      1      0      1      1     0     

1      0      1      0      1     0     

0      0      1      1      0     0     

0      0      0      0      0     0     M(v, w)  =  
1 if (v, w) is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

ED
F

Adjacency Matrix
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A     B     C     D     E     F

0      1      0      1      0     0     

0      0      1      0      0     0     

0      0      0      1      1     0     

0      0      0      0      1     0     

0      0      0      0      0     0     

0      0      0      0      0     0     

A

B

C

D

E

F

Space = |V|2

M(v, w)  =  
1 if (v, w) is in E

0 otherwise

A

B
C

ED
F

Adjacency Matrix for a 
Digraph
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B D

B D

C

A C E

D

E

A C

A

B

C

D

E

F

A

B
C

ED
F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that (v, w) is in E
a b

Adjacency List
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B D

E

D

C

a b

A

B

C

D

E

F

E

A

B
C

ED
F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|

Adjacency List for a Digraph


