
Graph Terminology

CSE 373
Data Structures

Graph Terminology 2

Reading

• Reading Chapter 13
› Sections 13.1 and 13.2

Graph Terminology 3

What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of
“graph”

Graph Terminology 4

Graphs

• Graphs are composed of
› Nodes (vertices)
› Edges (arcs) node

edge

Graph Terminology 5

Varieties

• Nodes
› Labeled or unlabeled

• Edges
› Directed or undirected
› Labeled or unlabeled

Graph Terminology 6

Motivation for Graphs
• Consider the data structures we have

looked at so far…
• Linked list: nodes with 1 incoming

edge + 1 outgoing edge
• Binary trees/heaps: nodes with 1

incoming edge + 2 outgoing edges
• B-trees: nodes with 1 incoming edge

+ multiple outgoing edges
• Up-trees: nodes with multiple

incoming edges + 1 outgoing edge
a

gd b

10

96 99

94

97

Value Next
node

Value Next
node

Graph Terminology 7

Motivation for Graphs

• How can you generalize these data
structures?

• Consider data structures for representing
the following problems…

Graph Terminology 8

Representing a Maze

S

Nodes = cells
Edges = door or passage

S

E

B

E

Graph Terminology 9

CSE Course Prerequisites at
UW

321143

142

322

326
341370

378

401

421Nodes = courses
Directed edge = prerequisite

Graph Terminology 10

Representing Electrical
Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor

Graph Terminology 11

Program statements

x1=q+y*z
x2=y*z-q Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice

Graph Terminology 12

Precedence
S1 a=0;
S2 b=1;
S3 c=a+1
S4 d=b+a;
S5 e=d+1;
S6 e=c+d;

3

1 2

6

5

4Which statements must execute before S6?
S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements

Graph Terminology 13

Information Transmission in a
Computer Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140
181

30
16

56

Graph Terminology 14

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on
connecting highway

UW

Graph Terminology 15

The Internet

Graph Terminology 16

Isomorphism

Same number of vertices connected in the same way

Time complexity to test if 2 graphs are isomorphic?

Graph Terminology 17

Bipartite Graphs

Football
Player

CSE
Nerd

Melrose Place

Two disjoint
sets of
vertices.
Edges link a
vertex from
one set to a
vertex in the
other set

Graph Terminology 18

Planarity

Can the circuit be put onto the chip in one layer?

Graph Terminology 19

Related Problems: Puzzles

Two problems:
1) Can you draw these without lifting your pen,
drawing each line only once
2) Can you start and end at the same point.

A B C

Graph Terminology 20

Sparsely Connected Graph

• n vertices
• n edges total
• Ring

Graph Terminology 21

Densely Connected Graph

• n vertices total
• (n (n-1))/2 edges total (w/o self loops)

Graph Terminology 22

In Between (Hypercube)

• n vertices
• log n edges between two vertices
• ½ n log n edges total

001 011

000 010

101 111

100 110

Graph Terminology 23

0110

0000

0010
0111

0100
0011

0001 0101

In Between (Hypercube)

1000

1010

1011

1001

1110

1111

1101

1100

- 16 nodes
- 4 edges
btwn two nodes

-32 total edges

S: (16,8,16)
D: (16,1,120)

S: (32,16,32)
H: (32,5,80)
D: (32,1,496)

S: (64,32,64)
H: (64,6,192)
D: (64,1,2016)

Graph Terminology 24

Neural Networks

Graph Terminology 25

Colorings

Graph Terminology 26

Four Color Conjecture

• is it true that any map can be colored using
four colors in such a way that adjacent
regions (i.e. those sharing a common
boundary segment, not just a point) receive
different colors (1852)?

• Many attempts at proof
• Finally “solved” by computer program (1974)

› Still extremely complex….

Graph Terminology 27

“We should mention that both our programs use only integer arithmetic, and
so we need not be concerned with round-off errors and similar dangers of
floating point arithmetic. However, an argument can be made that our ‘proof’
is not a proof in the traditional sense, because it contains steps that can
never be verified by humans. In particular, we have not proved the
correctness of the compiler we compiled our programs on, nor have we
proved the infallibility of the hardware we ran our programs on. These have to
be taken on faith, and are conceivably a source of error. However, from a
practical point of view, the chance of a computer error that appears
consistently in exactly the same way on all runs of our programs on all the
compilers under all the operating systems that our programs run on is
infinitesimally small compared to the chance of a human error during the
same amount of case-checking. Apart from this hypothetical possibility of a
computer consistently giving an incorrect answer, the rest of our proof can be
verified in the same way as traditional mathematical proofs. We concede,
however, that verifying a computer program is much more difficult than
checking a mathematical proof of the same length.”

Graph Terminology 28

Graph Definition

• A graph is a collection of nodes plus edges
› Linked lists, trees, and heaps are all special cases

of graphs
• The nodes are known as vertices (node =

“vertex”)
• Formal Definition: A graph G is a pair (V, E)

where
› V is a set of vertices or nodes
› E is a set of edges that connect vertices

Graph Terminology 29

Graph Example
• Here is a graph G = (V, E)

› Each edge is a pair (v1, v2), where v1, v2 are vertices
in V

› V = {A, B, C, D, E, F}
E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED
F

Graph Terminology 30

Directed vs Undirected
Graphs

• If the order of edge pairs (v1, v2) matters, the graph is
directed (also called a digraph): (v1, v2) ≠ (v2, v1)

• If the order of edge pairs (v1, v2) does not matter, the
graph is called an undirected graph: in this case, (v1,
v2) = (v2, v1)

v1
v2

v1 v2

Graph Terminology 31

Undirected Terminology

• Two vertices u and v are adjacent in an
undirected graph G if {u,v} is an edge in G
› edge e = {u,v} is incident with vertex u and vertex

v
• The degree of a vertex in an undirected graph

is the number of edges incident with it
› a self-loop counts twice (both ends count)
› denoted with deg(v)

Graph Terminology 32

Undirected Terminology

A

B
C

ED
F

Degree = 3
Degree = 0

B is adjacent to C and C is adjacent to B(A,B) is incident
to A and to B

Self-loop

Graph Terminology 33

Directed Terminology

• Vertex u is adjacent to vertex v in a directed
graph G if (u,v) is an edge in G
› vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
› vertex v is the terminal (or end) vertex of (u,v)

• Degree
› in-degree is the number of edges with the vertex

as the terminal vertex
› out-degree is the number of edges with the vertex

as the initial vertex

Graph Terminology 34

Directed Terminology

A

B
C

ED
F

In-degree = 2
Out-degree = 1

In-degree = 0
Out-degree = 0

B adjacent to C and C adjacent from B

Graph Terminology 35

Handshaking Theorem

• Let G=(V,E) be an undirected graph with
|E|=e edges

• Then
• Every edge contributes +1 to the degree of

each of the two vertices it is incident with
› number of edges is exactly half the sum of deg(v)
› the sum of the deg(v) values must be even

∑
∈

=
Vv
deg(v)2e

Graph Terminology 36

Handshaking Theorem II

• For a directed graph:

∑ ∑ ==
Ginv ginv

evoutdvind)()(

Graph Terminology 37

Graph ADT

• Nothing unexpected
› Build the graph (vertices, edges)
› Return the edges incident in(or out) of a vertex)
› Find if two vertices are adjacent etc..
› Replace …, Insert…Remove …

• What is interesting
› How to represent graphs in memory
› What representation to use for what algorithms

Graph Terminology 38

• Space and time are analyzed in terms of:

• Number of vertices = |V| and

• Number of edges = |E|

• There are at least two ways of representing
graphs:

• The adjacency matrix representation

• The adjacency list representation

Graph Representations

Graph Terminology 39

A B C D E F

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0 M(v, w) =
1 if (v, w) is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

ED
F

Adjacency Matrix

Graph Terminology 40

A B C D E F

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

A

B

C

D

E

F

Space = |V|2

M(v, w) =
1 if (v, w) is in E

0 otherwise

A

B
C

ED
F

Adjacency Matrix for a
Digraph

Graph Terminology 41

B D

B D

C

A C E

D

E

A C

A

B

C

D

E

F

A

B
C

ED
F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that (v, w) is in E
a b

Adjacency List

Graph Terminology 42

B D

E

D

C

a b

A

B

C

D

E

F

E

A

B
C

ED
F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|

Adjacency List for a Digraph

