Sets and Partitions

CSE 373
Data Structures

Reading

* Reading Chapter 11
» Section 11.6

Sets

Sets

Set: Collection (unordered) of distinct
objects

Union of two sets

» AUB ={x:xisin Aorxisin B}
Intersection of two sets

» ANB={x:xisin Aand x is in B}
Subtraction of two sets

» A—B ={x: xisin and x is not in B}

Sets

Set ADT

Make a set

Union of a set with another
Intersection of a set with another
Subtraction of a set from another

Sets

Set: simple implementation

o Store elements in a list, i.e., an ordered
sequence

» There must be a consistent total order
among elements of the various sets that
will be dealt with

 All methods defined previously can be
done in O(n)

> Not very interesting!

Sets

Disjoint Sets and Partitions

* Two sets are disjoint if their intersection
IS the empty set

A partition is a collection of disjoint sets

Sets

Equivalence Relations

A relation R is defined on set S if for
every pair of elementsa, b€ S,aRbis
either true or false.

 An equivalence relation is a relation R
that satisfies the 3 properties:

» Reflexive:aRaforalla & S
» Symmetric.aRbiffbRa;a,b& S
» Transitive:a Rbandb RcimpliesaRc

Sets 7

Equivalence Classes

« Given an equivalence relation R, decide
whether a pair of elements a, b€ Sis
such thata R b.

* The equivalence class of an element a
is the subset of S of all elements
related to a.

* Equivalence classes are disjoint sets

Sets 8

Dynamic Equivalence
Problem

« Starting with each element in a singleton set,
and an equivalence relation, build the
equivalence classes

* Requires two operations:

» Find the equivalence class (set) of a given
element

» Union of two sets
 |tis a dynamic (on-line) problem because the

sets change during the operations and Find
must be able to cope!

Sets

Methods for Partitions

* makeSet(x) : creates a single set
containing the element x and its "name”

* Union(A,B): returns the new set AUB
and destructs the old A and the old B

* Find(p): returns the “name” of the set
that contains p

Sets 10

Disjoint Union - Find

* Maintain a set of pairwise disjoint sets.
» {3,9,7}, {4,2,8}, {9}, {1,6}
« Each set has a unique name, one of its
members
» {3,9,7}, {4,2,8}, {9}, {1,6}

Sets

11

Union

* Union(x,y) — take the union of two sets
named x and y
» {3,9,7}, {4,2,8}, {9}, {1,6}
» Union(5,1)
{3,9,7,1,6}, {4,2,8}, {9},

Sets

12

Find

* Find(x) — return the name of the set
containing X.
> {3,5,7,1,6}, {4,2,8}, {9},
» Find(1) =5
» Find(4) =8

Sets

13

An Application

« Build a random maze by erasing edges.

Sets

14

An Application (ct'd)

 Pick Start and End

Start

End

Sets

15

An Application (ct'd)

 Repeatedly pick random edges to delete.

Start

End

Sets

Desired Properties

* None of the boundary is deleted

» Every cell is reachable from every other
cell.

* There are no cycles — no cell can reach
itself by a path unless it retraces some
part of the path.

Sets 17

A Cycle (we don’t want that)

Start

)

Sets

End

18

A Good Solution

Start

End

Sets

19

Good Solution : A Hidden
Tree

Start

End

20

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Start 1 | 2 | 3| 4| 5 | 6

13114 | 15|16 | 17 | 18

19120 |21 | 22| 23 | 24

25 |26 | 27 | 28 | 29 | 30

311323334 |35 |3 End

Sets 21

Basic Algorithm

« S = set of sets of connected cells
 E =set of edges
 Maze = set of maze edges initially empty

While there is more than one setin S
pick a random edge (x,y) and remove from E
u ;= Find(x); v := Find(y);
if u # v then
Union(u,v) //knock down the wall between the cells (cells in
/the same set are connected)
else
add (x,y) to Maze //don’t remove because there is already
// a path between x and y
All remaining members of E together with Maze form the maze

Example Step

Pick (8,14) S
{1,2,7,8,9,13,19}
{3}
Stat 1 2 | 3 | 4| 5|6 {4
_ {5}
7 8 9 (10|11 | 12 {6}
{10}
13114 |15 16| 17 | 18 1117}
19 | 20 | 21 | 22 23| 24 {12}
{14,20,26,27)
25 |26 27|28 |29 30 {15,16,21}

31 132 33 34 35 36 ENnd

{22,23,24,29,30,32
Sets 33,34,35,36} 23

Example

S S
gi\2,§,8,9,13,19} Find(8) = 7 {1,2,7,8,9,13,19,14,20 26,27}
3 in = 3

4 Find(14) = 20 {z}

: {4}

{6} - {5}

Eﬁ)} Union(7,20) E%}

ﬂ ;;—7} (11,17}

< {12}

2451,%,2%27} {15,16,21}

- {22,23,24,29,39,32
e s

Sets 24

Example

Start

Pick (19,20)
1 2|3 |4|5]|6

7 8 9 |10]11] 12
1314 | 15 16 | 17 | 18
19|20 | 21 | 22 23| 24
25 |26 27|28 |29 30
31|32 33 34 35 36 End

Sets

S

{1,2,7,8,9,13,19
14,20,26,27}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}
{15,16,21)

{22,23,24,29,39,32
33,34,35,36} 25

Example at the End

Start

1 2 3 | 4

5

7 8 9 10

13 ‘ 14 | 15 16

11
17

6
12
18

19 1 20 | 21 22

25 26 27 28

31 |32 33 34

23
29

35 36 End

24

30

Sets

S
{1,2,3,4,5,6,7,... 36}

— E
Maze

26

Up-Tree representation of a set

Initial state @ @ @ @ @ @ @

Intermediate @ @ 7
state \ ,/
Roots are the names of each set. é(

Sets

27

Find Operation

* Find(x) follow x to the root and return

the root

Find(6

Sets

28

Union Operation

* Union(l,)) - assuming i and j roots, point |
to J.

Union(1,7)

Sets 29

Simple Implementation

* Array of indices (Up[i] is parent of i)

12 3 45 67

up | 0

1

0

7

7

5

0

@

=

Up [X] = 0 means
X is a root.

® é

Sets

.

30

Union

Unton(up[] : integer array, X,y - iInteger) : {
//precondition: x and y are roots//

Up[x] =y
}

Constant Time!

Sets 31

Find

Recursive

Find(up[] : integer array, X : iInteger) : iInteger {
//precondition: X 1s In the range 1 to size//

1T up[x] = O then return x

else return Find(up,up[x]);

}

Iterative
Find(up[] : integer array, X : iInteger) : integer {
//precondition: X 1s In the range 1 to size//
while up[x] # O do

X 1= up[x];
return Xx;

}

Sets

32

A Bad Case

@ @ 6 - W

6 /@ @ Unicf>n(2,3)

@))
6’ /@ Union(n-1,n)

ﬁ

) Find(1) n steps!!

6" Sets

Union(1,2)

33

Weighted Union

« Weighted Union (weight = number of nodes)

» Always point the smaller tree to the root of the
larger tree

W-Union(1,7)

Sets 34

Example Again

®© @ 6 - O
@ @ " WO

6 Union(2,3)
/@ .. @
ofic _
Union(n-1,n)

6@% Find(1) constant time

Sets 35

Union(1,2)

Analysis of Weighted Union

« With weighted union an up-tree of height h
has weight at least 2".
* Proof by induction
» Basis: h = 0. The up-tree has one node, 2° = 1
» Inductive step: Assume true for all h’ < h.

T W(T,) > W(Tp) > 2"

Minimum weight T Weigr{ted Ind:\Jction
up-tree of height h hf Union hypothesis
formed by W(T) > 2h-1 + 2h-1 = 2h

weighted unions
Sets 36

Analysis of Weighted Union

Let T be an up-tree of weight n formed
by weighted union. Let h be its height.

n>2h

log, n > h

Find(x) in tree T takes O(log n) time.
Can we do better?

Sets

37

Worst Case for Weighted
Union

n/2 Weighted Unions

58688888

n/4 Weighted Unions

g 9% ¢ o9

Example of Worst Cast (cont’)

Aftern-1=n/2 + n/4 + ...+ 1 Weighted Unions

" Find
If there are n = 2k nodes then the longest
path from leaf to root has length k.

Sets

39

Elegant Array Implementation

, @D

B

up
weight

; &

s @

5

=N

N D
~ | O1

o1 o

N O |—

V4
0
4

Sets

Can save the extra
space by storing the
complement of weight
in the space reserved
for the root

40

Weighted Union

W-Uniton(i,jJ : 1ndex){
//1 and j are roots//
wi = weight][i];
wj = weight][j];

iIT wi < wj then

upli] = 3J;

weight[j] = wi + wj;
else

uplyl :=1;

weight[1] ::= wi +wj;

Sets

41

Path Compression

* On a Find operation point all the nodes on the
search path directly to the root.

% @/X
JraE

10

Sets 42

Self-Adjustment Works

»

v
>SN
TN
>\
N
>4

Path Compression Find

PC-Find(r : 1ndex) {
r .= 1;
while up[r] # 0 do //find root//
r -= up|[r];
iIf 1 # r then //compress path//
k = up[1];
while k # r do
up[i] := r;
1 = K;
k = up[k]
return(r)

}

Sets

44

Example

et
P

Disjoint Union / Find

with Weighted Union and PC

* Worst case time complexity for a W-
Union is O(1) and for a PC-Find is
O(log n).

* Time complexity for m > n operations on
n elements is O(m log* n) where log* n
IS a very slow growing function.

» log * n <7 for all reasonable n. Essentially
constant time per operation!

Sets 46

Amortized Complexity

* For disjoint union / find with weighted
union and path compression.

» average time per operation is essentially a
constant.

» worst case time for a PC-Find is O(log n).

* An individual operation can be costly,
but over time the average cost per
operation is not.

Sets

47

