Sets and Partitions

CSE 373

Data Structures

Reading

- Reading Chapter 11
 - > Section 11.6

Sets

- Set: Collection (unordered) of distinct objects
- Union of two sets
 - A U B = {x: x is in A or x is in B}
- Intersection of two sets
 - \rightarrow A \cap B = {x: x is in A and x is in B}
- Subtraction of two sets
 - \rightarrow A B = {x: xis in and x is not in B}

Set ADT

- Make a set
- Union of a set with another
- Intersection of a set with another
- Subtraction of a set from another

Set: simple implementation

- Store elements in a list, i.e., an ordered sequence
 - There must be a consistent total order among elements of the various sets that will be dealt with
- All methods defined previously can be done in O(n)
 - Not very interesting!

Disjoint Sets and Partitions

- Two sets are disjoint if their intersection is the empty set
- A partition is a collection of disjoint sets

Equivalence Relations

- A relation R is defined on set S if for every pair of elements a, b ∈ S, a R b is either true or false.
- An equivalence relation is a relation R that satisfies the 3 properties:
 - → Reflexive: a R a for all a ∈ S
 - > Symmetric: a R b iff b R a; a, b ∈ S
 - > Transitive: a R b and b R c implies a R c

Equivalence Classes

- Given an equivalence relation R, decide whether a pair of elements a, b∈ S is such that a R b.
- The equivalence class of an element a is the subset of S of all elements related to a.
- Equivalence classes are disjoint sets

Dynamic Equivalence Problem

- Starting with each element in a singleton set, and an equivalence relation, build the equivalence classes
- Requires two operations:
 - Find the equivalence class (set) of a given element
 - Union of two sets
- It is a dynamic (on-line) problem because the sets change during the operations and Find must be able to cope!

Methods for Partitions

- makeSet(x): creates a single set containing the element x and its "name"
- Union(A,B): returns the new set AUB and destructs the old A and the old B
- Find(p): returns the "name" of the set that contains p

Disjoint Union - Find

Maintain a set of pairwise disjoint sets.

```
> {3,5,7} , {4,2,8}, {9}, {1,6}
```

Each set has a unique name, one of its members

```
\rightarrow \{3,\underline{5},7\}, \{4,2,\underline{8}\}, \{\underline{9}\}, \{\underline{1},6\}
```

Union

 Union(x,y) – take the union of two sets named x and y

```
\rightarrow \{3, \underline{5}, 7\}, \{4, 2, \underline{8}\}, \{\underline{9}\}, \{\underline{1}, 6\}
```

Union(5,1){3,5,7,1,6}, {4,2,8}, {9},

Find

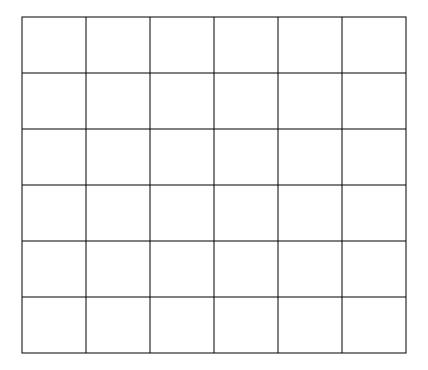
 Find(x) – return the name of the set containing x.

```
\rightarrow \{3, \underline{5}, 7, 1, 6\}, \{4, 2, \underline{8}\}, \{\underline{9}\},
```

- \rightarrow Find(1) = 5
- \rightarrow Find(4) = 8

An Application

• Build a random maze by erasing edges.



An Application (ct'd)

Pick Start and End

An Application (ct'd)

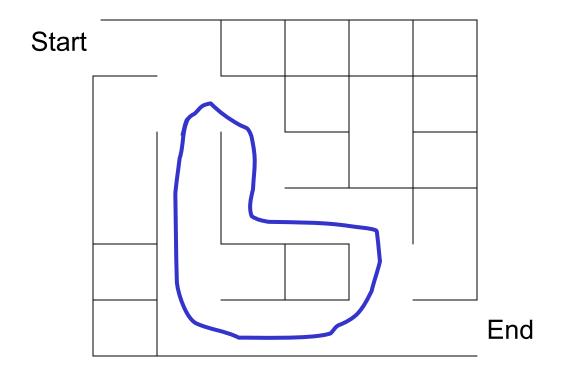
Repeatedly pick random edges to delete.



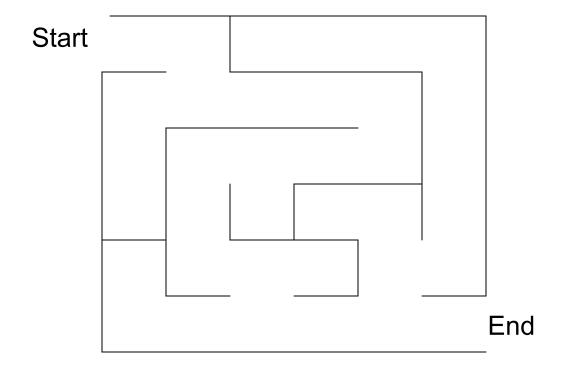
Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles no cell can reach itself by a path unless it retraces some part of the path.

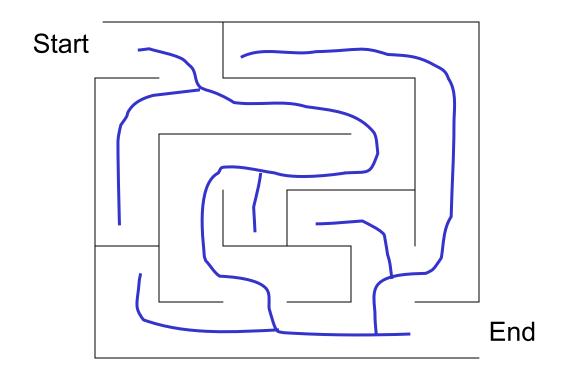
A Cycle (we don't want that)



A Good Solution



Good Solution : A Hidden Tree



Number the Cells

We have disjoint sets $S = \{ \{1\}, \{2\}, \{3\}, \{4\}, ..., \{36\} \} \}$ each cell is unto itself. We have all possible edges $E = \{ (1,2), (1,7), (2,8), (2,3), ... \}$ 60 edges total.

Start

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

End

Basic Algorithm

- S = set of sets of connected cells
- E = set of edges
- Maze = set of maze edges initially empty

```
While there is more than one set in S
pick a random edge (x,y) and remove from E
u := Find(x); v := Find(y);
if u ≠ v then
Union(u,v) //knock down the wall between the cells (cells in //the same set are connected)
else
add (x,y) to Maze //don't remove because there is already
// a path between x and y
All remaining members of E together with Maze form the maze
```

Example Step

	Pick (8,14)						S		
								{1,2, <u>7</u> ,8,9,13,19}	
Start	1	2	3	4	5	6		{ <u>3</u> } { <u>4</u> }	
	7	8	9	10	11	12		{ <u>5</u> } { <u>6</u> }	
	13	14	15	16	17	18		{ <u>10</u> } {11, <u>17</u> }	
	19	20	21	22	23	24		{ <u>12</u> } {14, <u>20</u> ,26,27}	
	25	26	27	28	29	30		{15, <u>16</u> ,21}	
	31	32	33	34	35	36	End	•	
·	Sets							{22,23,24,29,30,32 33, <u>34,</u> 35,36} ₂₃	

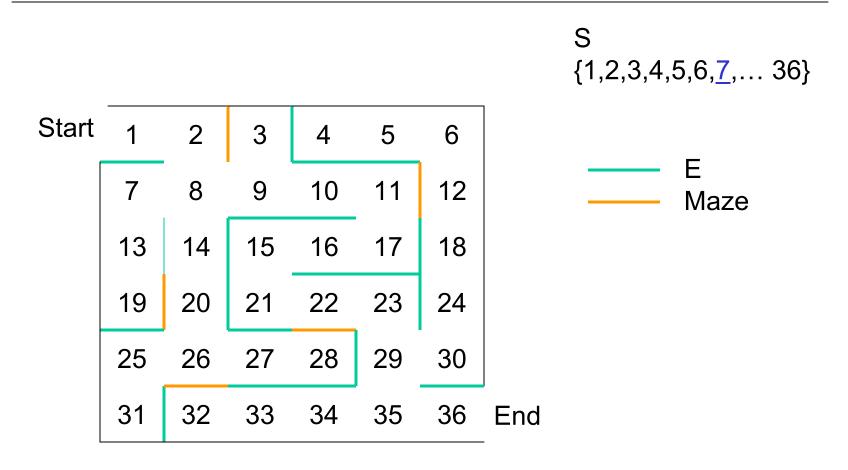
Example

```
S
                                                           S
\{1,2,\overline{2},8,9,13,19\}
                                                           {1,2,<del>7</del>,8,9,13,19,14,20 26,27}
                                 Find(8) = 7
{<u>3</u>}
                                                           {<u>3</u>}
<u>{4</u>}
                                 Find(14) = 20
{<u>5</u>}
{<u>6</u>}
                                                           {<u>6</u>}
                                  Union(7,20)
{<u>10</u>}
                                                           {<u>10</u>}
                                                           {11, <u>17</u>}
                                                           {<u>12</u>}
\{14, 20, 26, 27\}
                                                           {15,<u>16</u>,21}
{15,<u>16</u>,21}
                                                           {22,23,24,29,39,32
{22,23,24,29,39,32
                                                             33,34,35,36}
 33,34,35,36}
```

Example

	Pick	(19,2	20)					S {1,2, <u>7</u> ,8,9,13,19
Start	1	2	3	4	5	6		14,20,26,27} { <u>3</u> }
	7	8	9	10	11	12		{ <u>4</u> } { <u>5</u> }
	13	14	15	16	17	18		{ <u>6</u> } { <u>10</u> }
	19	20	21	22	23	24		{11, <u>17</u> } {12}
	25	26	27	28	29	30		{15, <u>16</u> ,21}
	31	32	33	34	35	36	End	•
·	Sets							{22,23,24,29,39,32 33, <u>34,35,36</u> } ₂₅

Example at the End



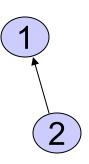
Up-Tree representation of a set

Initial state

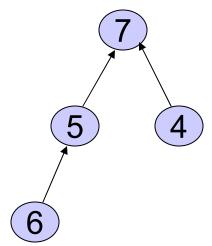
- 1
- 2
- 3
- 4
- 5
- 6

7

Intermediate state



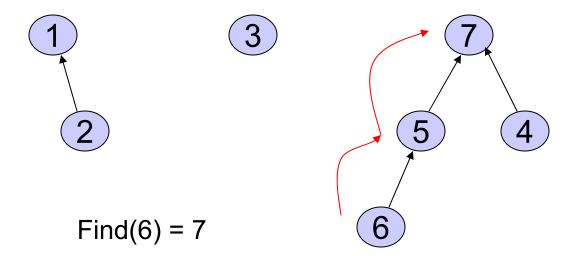
(3)



Roots are the names of each set.

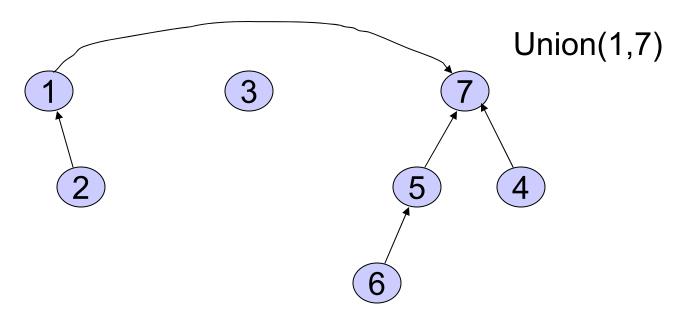
Find Operation

 Find(x) follow x to the root and return the root



Union Operation

 Union(i,j) - assuming i and j roots, point i to j.

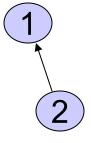


Simple Implementation

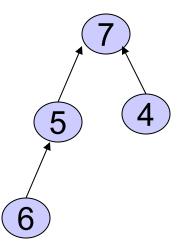
Array of indices (Up[i] is parent of i)

		2					
up	0	1	0	7	7	5	0

Up [x] = 0 means x is a root.



(3)



Union

```
Union(up[] : integer array, x,y : integer) : {
//precondition: x and y are roots//
Up[x] := y
}
```

Constant Time!

Find

Recursive

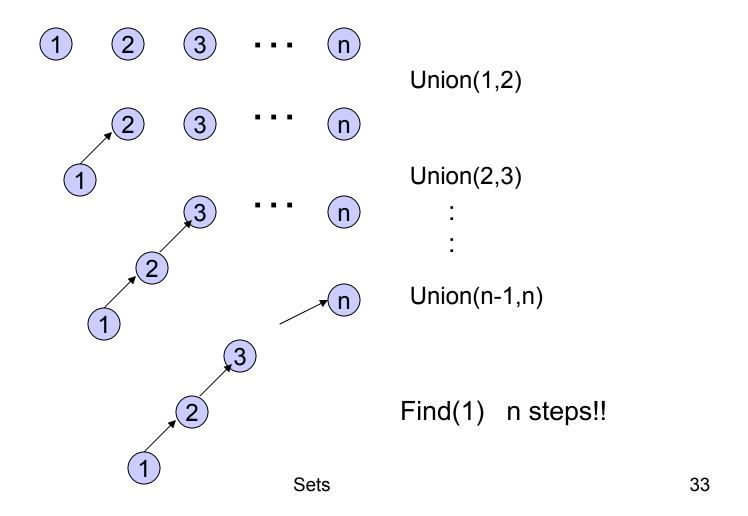
x := up[x];

return x;

```
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
if up[x] = 0 then return x
else return Find(up,up[x]);
}

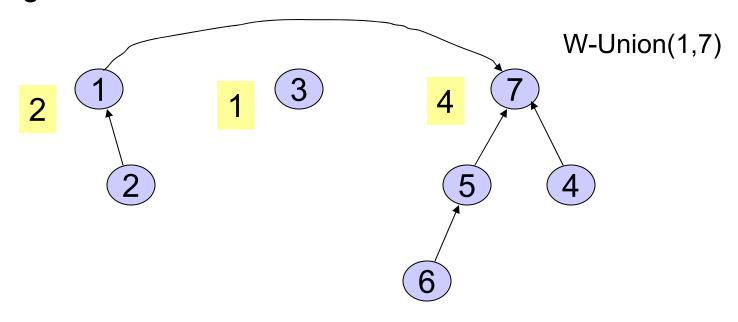
Iterative
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
while up[x] ≠ 0 do
```

A Bad Case

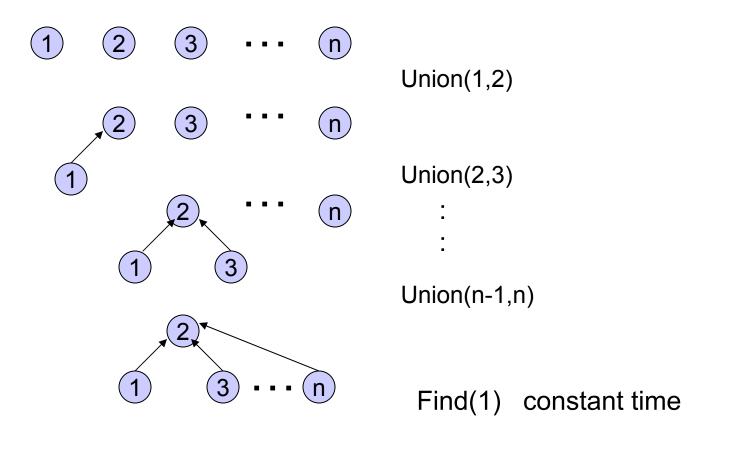


Weighted Union

- Weighted Union (weight = number of nodes)
 - Always point the smaller tree to the root of the larger tree



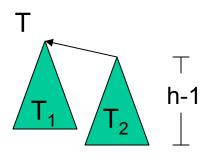
Example Again



Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2^h.
- Proof by induction
 - > Basis: h = 0. The up-tree has one node, $2^0 = 1$
 - Inductive step: Assume true for all h' < h.</p>

Minimum weight up-tree of height h formed by weighted unions



$$W(T_1) \ge W(T_2) \ge 2^{h-1}$$

$$Weighted \text{ Induction hypothesis}$$

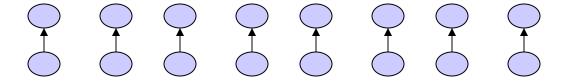
$$W(T) \ge 2^{h-1} + 2^{h-1} = 2^h$$

Analysis of Weighted Union

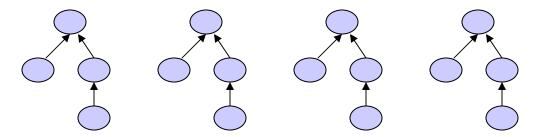
- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- $n \ge 2^h$
- $\log_2 n \ge h$
- Find(x) in tree T takes O(log n) time.
- Can we do better?

Worst Case for Weighted Union

n/2 Weighted Unions

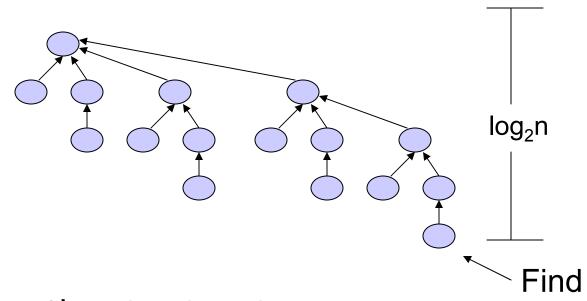


n/4 Weighted Unions



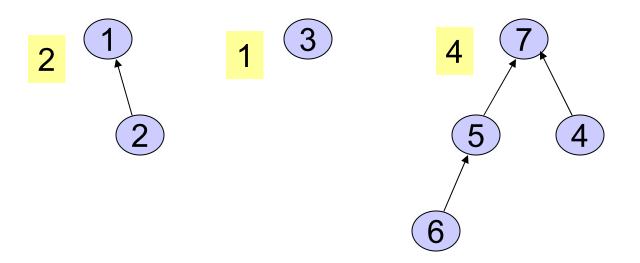
Example of Worst Cast (cont')

After n - 1 = n/2 + n/4 + ... + 1 Weighted Unions



If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.

Elegant Array Implementation



	1	2	3	4	5	6	_7
up	0	1	0	7	7	5	0
weight	2		1				4

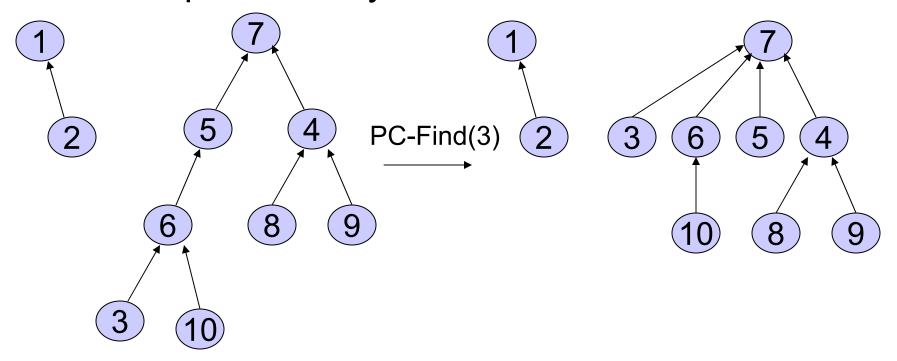
Can save the extra space by storing the complement of weight in the space reserved for the root

Weighted Union

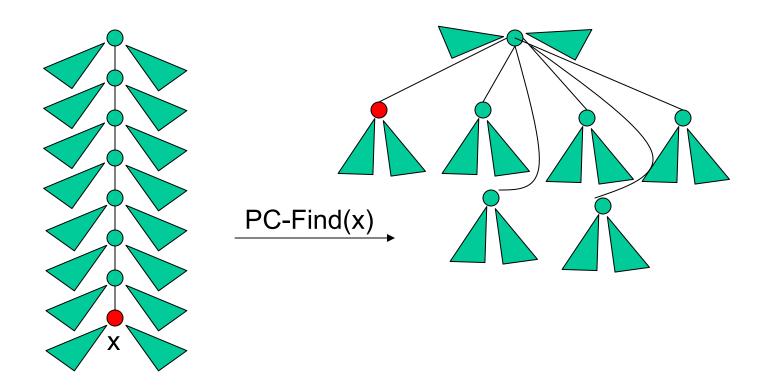
```
W-Union(i,j : index){
//i and j are roots//
    wi := weight[i];
    wj := weight[j];
    if wi < wj then
        up[i] := j;
        weight[j] := wi + wj;
    else
        up[j] :=i;
        weight[i] := wi +wj;
}</pre>
```

Path Compression

 On a Find operation point all the nodes on the search path directly to the root.



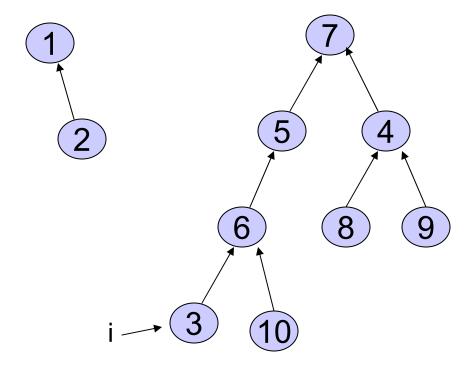
Self-Adjustment Works



Path Compression Find

```
PC-Find(i : index) {
    r := i;
    while up[r] ≠ 0 do //find root//
        r := up[r];
    if i ≠ r then //compress path//
        k := up[i];
    while k ≠ r do
        up[i] := r;
        i := k;
        k := up[k]
    return(r)
}
```

Example



Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is O(1) and for a PC-Find is O(log n).
- Time complexity for m ≥ n operations on n elements is O(m log* n) where log* n is a very slow growing function.
 - > log * n < 7 for all reasonable n. Essentially constant time per operation!

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is O(log n).
- An individual operation can be costly, but over time the average cost per operation is not.