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CSE 373
Data Structures



Reading

* Reading Chapter 11
» Section 11.6
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Sets

Set: Collection (unordered) of distinct
objects

Union of two sets

» AUB ={x:xisin Aorxisin B}
Intersection of two sets

» ANB={x:xisin Aand x is in B}
Subtraction of two sets

» A—B ={x: xisin and x is not in B}
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Set ADT

Make a set

Union of a set with another
Intersection of a set with another
Subtraction of a set from another
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Set: simple implementation

o Store elements in a list, i.e., an ordered
sequence

» There must be a consistent total order
among elements of the various sets that
will be dealt with

 All methods defined previously can be
done in O(n)

> Not very interesting!
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Disjoint Sets and Partitions

* Two sets are disjoint if their intersection
IS the empty set

A partition is a collection of disjoint sets
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Equivalence Relations

A relation R is defined on set S if for
every pair of elementsa, b€ S,aRbis
either true or false.

 An equivalence relation is a relation R
that satisfies the 3 properties:

» Reflexive:aRaforalla & S
» Symmetric.aRbiffbRa;a,b& S
» Transitive:a Rbandb RcimpliesaRc
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Equivalence Classes

« Given an equivalence relation R, decide
whether a pair of elements a, b€ Sis
such thata R b.

* The equivalence class of an element a
is the subset of S of all elements
related to a.

* Equivalence classes are disjoint sets
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Dynamic Equivalence
Problem

« Starting with each element in a singleton set,
and an equivalence relation, build the
equivalence classes

* Requires two operations:

» Find the equivalence class (set) of a given
element

» Union of two sets
 |tis a dynamic (on-line) problem because the

sets change during the operations and Find
must be able to cope!
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Methods for Partitions

* makeSet(x) : creates a single set
containing the element x and its "name”

* Union(A,B): returns the new set AUB
and destructs the old A and the old B

* Find(p): returns the “name” of the set
that contains p
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Disjoint Union - Find

* Maintain a set of pairwise disjoint sets.
» {3,9,7}, {4,2,8}, {9}, {1,6}
« Each set has a unique name, one of its
members
» {3,9,7}, {4,2,8}, {9}, {1,6}

Sets
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Union

* Union(x,y) — take the union of two sets
named x and y
» {3,9,7}, {4,2,8}, {9}, {1,6}
» Union(5,1)
{3,9,7,1,6}, {4,2,8}, {9},

Sets
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Find

* Find(x) — return the name of the set
containing X.
> {3,5,7,1,6}, {4,2,8}, {9},
» Find(1) =5
» Find(4) =8

Sets
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An Application

« Build a random maze by erasing edges.

Sets
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An Application (ct'd)

 Pick Start and End

Start

End

Sets
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An Application (ct'd)

 Repeatedly pick random edges to delete.

Start

End
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Desired Properties

* None of the boundary is deleted

» Every cell is reachable from every other
cell.

* There are no cycles — no cell can reach
itself by a path unless it retraces some
part of the path.
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A Cycle (we don’t want that)

Start

)

Sets

End
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A Good Solution

Start

End

Sets
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Good Solution : A Hidden
Tree

Start

End
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Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Start 1 | 2 | 3| 4| 5 | 6

13114 | 15|16 | 17 | 18

19120 |21 | 22| 23 | 24

25 |26 | 27 | 28 | 29 | 30

311323334 |35 |3 End
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Basic Algorithm

« S = set of sets of connected cells
 E =set of edges
 Maze = set of maze edges initially empty

While there is more than one setin S
pick a random edge (x,y) and remove from E
u ;= Find(x); v := Find(y);
if u # v then
Union(u,v) //knock down the wall between the cells (cells in
/the same set are connected)
else
add (x,y) to Maze //don’t remove because there is already
// a path between x and y
All remaining members of E together with Maze form the maze




Example Step

Pick (8,14) S
{1,2,7,8,9,13,19}
{3}
Stat 1 2 | 3 | 4| 5|6 {4
_ {5}
7 8 9 (10|11 | 12 {6}
{10}
13114 |15 16| 17 | 18 1117}
19 | 20 | 21 | 22 23| 24 {12}
{14,20,26,27)
25 |26 27|28 |29 30 {15,16,21}

31 132 33 34 35 36 ENnd

{22,23,24,29,30,32
Sets 33,34,35,36} 23



Example

S S
gi\2,§,8,9,13,19} Find(8) = 7 {1,2,7,8,9,13,19,14,20 26,27}
3 in = 3

4 Find(14) = 20 {z}

: {4}

{6} - {5}

Eﬁ)} Union(7,20) E%}

ﬂ ;;—7} (11,17}

< {12}

2451,%,2%27} {15,16,21}

- {22,23,24,29,39,32
e s
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Example

Start

Pick (19,20)
1 2|3 |4|5]|6

7 8 9 |10]11] 12
1314 | 15 16 | 17 | 18
19|20 | 21 | 22 23| 24
25 |26 27|28 |29 30
31|32 33 34 35 36 End

Sets

S

{1,2,7,8,9,13,19
14,20,26,27}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}
{15,16,21)

{22,23,24,29,39,32
33,34,35,36} 25



Example at the End

Start

1 2 3 | 4

5

7 8 9 10

13 ‘ 14 | 15 16

11
17

6
12
18

19 1 20 | 21 22

25 26 27 28

31 |32 33 34

23
29

35 36 End

24

30

Sets

S
{1,2,3,4,5,6,7,... 36}

— E
Maze
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Up-Tree representation of a set

Initial state @ @ @ @ @ @ @

Intermediate @ @ 7
state \ ,/
Roots are the names of each set. é(

Sets
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Find Operation

* Find(x) follow x to the root and return

the root

Find(6

Sets

28



Union Operation

* Union(l,)) - assuming i and j roots, point |
to J.

Union(1,7)
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Simple Implementation

* Array of indices (Up[i] is parent of i)

12 3 45 67

up | 0

1

0

7

7

5

0

@

=

Up [X] = 0 means
X is a root.

® é

Sets

.
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Union

Unton(up[] : integer array, X,y - iInteger) : {
//precondition: x and y are roots//

Up[x] =y
}

Constant Time!
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Find

Recursive

Find(up[] : integer array, X : iInteger) : iInteger {
//precondition: X 1s In the range 1 to size//

1T up[x] = O then return x

else return Find(up,up[x]);

}

Iterative
Find(up[] : integer array, X : iInteger) : integer {
//precondition: X 1s In the range 1 to size//
while up[x] # O do

X 1= up[x];
return Xx;

}

Sets
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A Bad Case

@ @ 6 - W

6 /@ @ Unicf>n(2,3)

@) )
6’ /@ Union(n-1,n)

ﬁ

) Find(1) n steps!!

6" Sets

Union(1,2)
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Weighted Union

« Weighted Union (weight = number of nodes)

» Always point the smaller tree to the root of the
larger tree

W-Union(1,7)
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Example Again

®© @ 6 - O
@ @ " WO

6 Union(2,3)
/@ .. @
ofic _
Union(n-1,n)

6@% Find(1) constant time
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Analysis of Weighted Union

« With weighted union an up-tree of height h
has weight at least 2".
* Proof by induction
» Basis: h = 0. The up-tree has one node, 2° = 1
» Inductive step: Assume true for all h’ < h.

T W(T,) > W(Tp) > 2"

Minimum weight T Weigr{ted Ind:\Jction
up-tree of height h hf Union hypothesis
formed by W(T) > 2h-1 + 2h-1 = 2h

weighted unions
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Analysis of Weighted Union

Let T be an up-tree of weight n formed
by weighted union. Let h be its height.

n>2h

log, n > h

Find(x) in tree T takes O(log n) time.
Can we do better?

Sets
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Worst Case for Weighted
Union

n/2 Weighted Unions

58688888

n/4 Weighted Unions

g 9% ¢ o9



Example of Worst Cast (cont’)

Aftern-1=n/2 + n/4 + ...+ 1 Weighted Unions

" Find
If there are n = 2k nodes then the longest
path from leaf to root has length k.

Sets
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Elegant Array Implementation

, @D

B

up
weight

; &

s @

5

=N

N D
~ | O1

o1 o

N O |—

V4
0
4

Sets

Can save the extra
space by storing the
complement of weight
in the space reserved
for the root
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Weighted Union

W-Uniton(i,jJ : 1ndex){
//1 and j are roots//
wi = weight][i];
wj = weight][j];

iIT wi < wj then

upli] = 3J;

weight[j] = wi + wj;
else

uplyl :=1;

weight[1] ::= wi +wj;

Sets
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Path Compression

* On a Find operation point all the nodes on the
search path directly to the root.

% @/X
JraE

10
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Self-Adjustment Works

»

v
>SN
TN
>\
N
>4



Path Compression Find

PC-Find(r : 1ndex) {
r .= 1;
while up[r] # 0 do //find root//
r -= up|[r];
iIf 1 # r then //compress path//
k = up[1];
while k # r do
up[i] := r;
1 = K;
k = up[k]
return(r)

}

Sets
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Example

et
P



Disjoint Union / Find

with Weighted Union and PC

* Worst case time complexity for a W-
Union is O(1) and for a PC-Find is
O(log n).

* Time complexity for m > n operations on
n elements is O(m log* n) where log* n
IS a very slow growing function.

» log * n <7 for all reasonable n. Essentially
constant time per operation!
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Amortized Complexity

* For disjoint union / find with weighted
union and path compression.

» average time per operation is essentially a
constant.

» worst case time for a PC-Find is O(log n).

* An individual operation can be costly,
but over time the average cost per
operation is not.

Sets
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