Sorting (Part Il)

CSE 373
Data Structures

How fast can we sort?

* Heapsort, Mergesort, and Quicksort all
run in O(N log N) best case running
time

« Can we do any better?

* No, if sorting is comparison-based.

Sorting (prt 11)

Sorting Model

« Basic assumption: we can only compare two
elements at a time

» we can only reduce the possible solution space by
half each time we make a comparison

« Suppose you are given N elements
» Assume no duplicates

 How many possible orderings can you get?
» Example: a, b,c (N=23)

Sorting (prt 11) 3

Permutations

 How many possible orderings can you get?

» Example: a, b,c (N=23)

» (abc),(achb),(bac),(bca),(cab), (cba)

» 6 orderings = 3.2.1 = 3! (i.e., “3 factorial”)

» All the possible permutations of a set of 3 elements
 For N elements

» N choices for the first position, (N-1) choices for the
second position, ..., (2) choices, 1 choice

» N(N-1)(N-2)---(2)(1)= N! possible orderings

Sorting (prt 11)

Decision Tree

a<b<c, b<c<a,
c<a<b, a<c<hb,
b<a<c, c<b<a

“/EZL é:B*

a<bh<c b<c<a
c<a<b b<a<c
a<c<b c<b<a
a<(i/\fl>C b<‘C/N3>C
a<b<c c<a<b b<c<a c<b<a
a<c<b b<ac<c
b<f/&>c C<y\>a
a<b<c a<c<b b<c<a b<a<c

The leaves contain all the possible orderings of a, b, ¢
Sorting (prt 11) 5

Decision Trees

* A Decision Tree is a Binary Tree such that:

» Each node = a set of orderings
* i.e., the remaining solution space

» Each edge = 1 comparison
» Each leaf = 1 unique ordering
» How many leaves for N distinct elements?
* N!, i.e., a leaf for each possible ordering
* Only 1 leaf has the ordering that is the
desired correctly sorted arrangement

Sorting (prt 11)

Decision Trees and Sorting

* Every comparison-based sorting algorithm
corresponds to a decision tree

» Finds correct leaf by choosing edges to follow
* i.e., by making comparisons

» Each decision reduces the possible solution space
by one half

* Run time is > maximum no. of comparisons

> maximum number of comparisons is the length of
the longest path in the decision tree, i.e. the height
of the tree

Sorting (prt 11)

Decision Tree Example

a<bh<c
c<a<b
a<c<b

— b

a<b<c b<c<a,
c<a<bh, a<c<b,
b<a<c, c<b<a

W 3! possible orders

a<&//\\3>c

a<bh<c
a<c<b

b<ﬁ///\\3fc

c<a<b

a<b<c a<c<b

s actual order

Sorting (prt 11)

;:B*

b<c<a
b<a<c
c<b<a

b<g//\\5>c
b<c<a c<b<a
b<a<c

C<ﬁ///\\£ja

b<c<a b<a<c

How many leaves on a tree?

« Suppose you have a binary tree of height d .
How many leaves can the tree have?

» d=1—-> at most 2 leaves,
» d =2 -2 at most 4 leaves, etc.

6 o

Sorting (prt 11)

Lower bound on Height

A binary tree of height d has at most 29 |leaves
» depthd =1 > 2leaves, d =2 - 4 leaves, etc.
» Can prove by induction

Number of leaves, L < 2d

Heightd > log, L

The decision tree has N! leaves

So the decision tree has height d > log,(N!)

Sorting (prt 11) 10

Upper Bounds and Lower
Bounds

* f(n)is O(g(n)) means that f(n) does not
grow any faster than g(n)

» g(n) is an upper bound for f(n)

 f(n) is Q(g(n)) means that f(n) grows ar
least as fast as g(n)

» g(n) is a lower bound for f(n)
» f(n) is Q(g(n)) if g(n) is O(f(n))

Sorting (prt 11)

11

log(N!) is Q(NlogN)

log(N") =log(N - (N - 1)-(N - 2)---(2)-(2))

=log N +log(N —1) +log(N —2) +---+log 2+ log1
first N/2 terms
O

o =logN +log(N —-1) +log(N —2)+---+Iog%

o

each of the selected N N
terms is > logN/ > |Og _
—= 2 2
N

N N
nl=y2m(n/e)"| =~ (I0gN-log2)=—"logN -—>

Sterling’s formula | = Q(N log N)

Sorting (prt 11) 12

(Q(N log N)

* Run time of any comparison-based
sorting algorithm is Q(N log N)

« Can we do better if we don’t use
comparisons”?

Sorting (prt 11)

13

Bucket Sort

n Keys to sort in range [0,N-1]

Have N buckets: bucket 1 will contain the
elements with key value |

Pass 1: place elements in their respective
buckets: O(n)

Pass 2: concatenate the N buckets: O(n+N)
since have to check empty buckets

Needs extra space
Good only if N not too large compared to n

Sorting (prt 11) 14

Radix Sort: Sorting integers

Historically goes back to the 1890 census.

Radix sort = multi-pass bucket sort of integers
in the range 0 to BP-1

Bucket-sort from least significant to most
significant “digit” (base B)
Requires P(B+N) operations where P is the

number of passes (the number of base B digits
In the largest possible input number).

If P and B are constants then O(N) time to sort!

Sorting (prt 11) 15

Radix Sort Example

Input data

478
537
9
721
3
38
123
67

Bucket sort
by 1’s digit

After 1st pass

721
3

3 4) 6 7

123

721

3 537

478
38

[©

537
67
478
38

This example uses
decimal digits for
simplicity of
demonstration. Larger
bucket counts should
be used in an actual
implementation.

Sorting (prt 11)

9

16

Radix Sort Example

Bucket sort

After 15t pass by 10's After 2nd pass

3 9
193 o|1|2|3|4|5|6|7|8]09 791
537 03 721 | 537 67 | 478 123

67 L 123 | 38 537
478 38

38 67

9 478

Sorting (prt 11) 17

Radix Sort Example

Bucket sort

After 2"d pass After 3 pass

by 100’s

3 digit 3

9 9
721 0 1 2 3 4 5 6 7 8 9 38
123 003 | 123 478 | 537 721 67
537 009 123
38 038 478
67 067 537
478 721

Invariant: after k passes the low order k digits are sorted.

Sorting (prt 11) 18

Implementation Options

 Linked List

» Linked List of data, bucket array of linked lists.
» Concatenate lists for each pass.

* Array / Linked List

» Array of data, bucket array of linked lists.

* Array / Array
» Array of data, array for all buckets.
» Requires counting.

Sorting (prt 11)

19

Array / Array

Data Array Count Array Address Array Target Array
0 |478 ol © ol © 0 (721 } 1
1 937 1] 1 (I 1 S| | 3
21 9 2| O 2| 1 2 123
3 |721 3] 2 - 3| 1 3 [837] | .
4| 3 41 O 41 3 4 | 67
5 | 38 5 0 5| 3 5 [478] | .
6 |123 6| O 6| 3 6 | 38
7 | 67 71 2 71 3 709l Fo
8l 2 8 o .
9| 1 9| 7 Bucket i ranges from

add[0] := 0 add]i] to add[i+1]-1
add[i] := add[i-1] + countfi-1], i > 0

Sorting (prt I1) 20

Array / Array

Pass 1 (over A)
» Calculate counts and addresses for 1st “digit”

Pass 2 (over T)
> Move datafrom Ato T
» Calculate counts and addresses for 2" “digit”

Pass 3 (over A)

» Move data from T to A
» Calculate counts and addresses for 3" “digit”

In the end an additional copy may be needed.

Sorting (prt 11) 21

Choosing Parameters for
Radix Sort

N number of integers — given
m bit numbers - given

B number of buckets

» B =2": power of 2 so that calculations can be
done by shifting.

> N/B not too small, otherwise too many empty
buckets.

» P = m/r should be small.

Example — 1 million 64 bit numbers. Choose
B =21=65,536. 1 Million/B= 15 numbers

per bucket. P =64/16 = 4 passes.

(prt 1)

22

Properties of Radix Sort

* Not in-place
» needs lots of auxiliary storage.

o Stable

» equal keys always end up in same bucket
In the same order.

e Fast
y B = 2" buckets on m bit numbers

O(? (n +2')) time

Sorting (prt 11) 23

Internal versus External
Sorting

« So far assumed that accessing AJl] is fast —
Array A is stored in internal memory
» Algorithms so far are good for internal sorting

« What if A is so large that it doesn’t fit in

internal memory?

» Data on disk

» Delay in accessing A[i] —need to get many records
(keys) at a time

Sorting (prt 11) 24

Internal versus External

Sorting

* Need sorting algorithms that minimize
disk access time

» External sorting — Basic Idea:

* Load chunk of data into main memory, sort,
store this “run” on disk

» Use the Merge routine from Mergesort to
merge runs

« Repeat until you have only one run (one sorted
chunk)

Sorting (prt 11) 25

Summary of Sorting

« Sorting choices:
» O(N?) — Insertion Sort

» O(N log N) average case running time:
« Heapsort: In-place, not stable.
« Mergesort: O(N) extra space, stable.

 Quicksort: claimed fastest in practice but, O(N?) worst
case. Needs extra storage for recursion. Not stable.

» O(N) — Radix Sort: fast and stable. Not
comparison based. Not in-place.

Sorting (prt 11)

26

