Sorting

CSE 373
Data Structures

Reading

- Reading Chapter 11
, Sections 11.1 (a review)
, Sections 11.2 to 11.5

Sorting

- Input: an array A of data records with a key value in each data record
, Some sorting algorithms, e.g. Mergesort work also on linked lists
- The values must be "comparable"
, For example: integers, strings
- Output: reorganize the elements of A such that
- For any i and j , if i < j then $\mathrm{A}[\mathrm{i}] \leq \mathrm{A}[\mathrm{j}]$

Consistent Ordering

- The comparison function must provide a consistent ordering on the set of possible keys
, You can compare any two keys and get back an indication of $a<b, a>b$, or $a=b$
, The comparison functions must be consistent
- If compare (\mathbf{a}, \mathbf{b}) says $a<b$, then compare (b, a) must say $b>a$
- If compare (\mathbf{a}, \mathbf{b}) says $a=b$, then compare (b, a) must say $b=a$
- If compare (a,b) says $a=b$, then equals(a, b) and equals(b,a) must say a=b

Why Sort?

- Sorting algorithms are among the most frequently used algorithms in computer science
- Allows binary search of an N-element array in $\mathrm{O}(\log \mathrm{N})$ time
- Allows $\mathrm{O}(1)$ time access to k th largest element in the array for any k
- Allows easy detection of any duplicates

Time

- How fast is the algorithm?
> The definition of a sorted array A says that for any $i<j, A[i]<A[j]$
, This means that you need to at least check on each element at the very minimum, l.e., at least $\mathrm{O}(\mathrm{N})$
> And you could end up checking each element against every other element, which is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
, The big question is: How close to $\mathrm{O}(\mathrm{N})$ can you get?

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
, Is copying needed? O(n) additional space
, In-place sorting - no copying - O(1) additional space
, Somewhere in between for "temporary", e.g. O(logn) space
> External memory sorting - data so large that does not fit in memory

Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
> E.g. Phone book sorted by name. Now sort by county - is the list still sorted by name within each county?
> Extremely important property for databases
> A stable sorting algorithm is one which does not rearrange the order of duplicate keys

Example

Stable Sort

Unstable Sort

Bubble Sort

- "Bubble" elements to to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i]>A[i+1]$
> Bubble every element towards its correct position
- last position has the largest element
- then bubble every element except the last one towards its correct position
- then repeat until done or until the end of the quarter, whichever comes first ...

Bubblesort

```
bubble(A[1..n]: integer array, n : integer): {
    i, j : integer;
    for i = 1 to n-1 do
        for j = 2 to n-i+1 do
        if A[j-1] > A[j] then SWAP(A[j-1],A[j]);
    }
SWAP(a,b) : {
    t :integer;
    t:=a; a:=b; b:=t;
}
```


Put the largest element in its place

larger value?

Bubble Sort: Just Say No

- "Bubble" elements to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i]>A[i+1]$
- We bubblize for $\mathrm{i}=1$ to n (i.e, n times)
- Each bubblization is a loop that makes n-i comparisons
- This is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Insertion Sort

- What if first k elements of array are already sorted?
> $4,7,12,5,19,16$
- We can shift the tail of the sorted elements list down and then insert next element into proper position and we get $k+1$ sorted elements
> 4, 5, 7, 12, 19, 16

Insertion Sort

```
InsertionSort(A[1..N]: integer array, N: integer) \{
    i, j, temp: integer ;
    for \(\mathrm{i}=2\) to N \{
            temp := A[i];
            j := i-1;
            while \(\mathrm{j}>1\) and \(\mathrm{A}[\mathrm{j}-1]\) > temp \{
                    A[j] := A[j-1]; j := j-1; \(\}\)
            A[j] = temp;
    \}
\}
- Is Insertion sort in place? Stable? Running time = ?
```


Insertion Sort Characteristics

- In place and Stable
- Running time
, Worst case is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- reverse order input
- must copy every element every time
- Good sorting algorithm for almost sorted data
> Each item is close to where it belongs in sorted order.

Inversions

- An inversion is a pair of elements in wrong order

$$
>\mathrm{i}<\mathrm{j} \text { but } A[i]>A[j]
$$

- By definition, a sorted array has no inversions
- So you can think of sorting as the process of removing inversions in the order of the elements

Inversions

- Our simple sorting algorithms so far swap adjacent elements (explicitly or implicitly) and remove just 1 inversion at a time
> Their running time is proportional to number of inversions in array
- Given N distinct keys, the maximum possible number of inversions is

$$
(n-1)+(n-2)+\ldots+1=\sum_{i=1}^{n-1} i=\frac{(n-1) n}{2}
$$

Inversions and Adjacent Swap

Sorts

- "Average" list will contain half the max number of inversions $=\frac{(n-1)}{4}$
, So the average running time of Insertion sort is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Any sorting algorithm that only swaps adjacent elements requires $\mathrm{O}\left(\mathrm{N}^{2}\right)$ time because each swap removes only one inversion (lower bound)

"Divide and Conquer" Sorting algorithms

- Very important strategy in computer science:
> Divide problem into smaller parts
, Independently solve the parts
> Combine these solutions to get overall solution
- Idea 1: Divide array into two halves, recursively sort left and right halves, then merge two halves \rightarrow Mergesort
- Idea 2 : Partition array into items that are "small" and items that are "large", then recursively sort the two sets \rightarrow Quicksort

Quicksort (1962)

- Due to Sir Tony Hoare (1934-)

Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the $\mathrm{O}(\mathrm{N})$ extra space that MergeSort does
> Partition array into left and right sub-arrays
- Choose an element of the array, called pivot
- the elements in left sub-array are all less than pivot
- elements in right sub-array are all greater than pivot
> Recursively sort left and right sub-arrays
, The elements "remain" in the array

"Four easy steps"

- To sort an array S

1. If the number of elements in \mathbf{S} is 0 or 1 , then return. The array is sorted.
2. Pick an element v in \mathbf{S}. This is the pivot value.
3. Partition $\mathbf{S}-\{v\}$ into two disjoint subsets, \mathbf{S}_{1}
$=\{$ all values $x \mathbb{\unlhd}\}$, and $\mathbf{S}_{2}=\{$ all values $x \geq v\}$.
4. Return QuickSort($\left.\mathbf{S}_{1}\right), v$, QuickSort $\left(\mathbf{S}_{2}\right)$

The steps of QuickSort

Details, details

- Implementing the actual partitioning
- Picking the pivot
, want a value that will cause $\left|S_{1}\right|$ and $\left|S_{2}\right|$ to be non-zero, and close to equal in size if possible
- Choosing the order of the recursive calls

Quicksort Partitioning

- Need to partition the array into left and right subarrays
> the elements in left sub-array are \leq pivot
, elements in right sub-array are \geq pivot
- How do the elements get to the correct partition?
, Choose an element from the array as the pivot
, Make one pass through the rest of the array and swap as needed to put elements in partitions

Partitioning:Choosing the pivot

- One implementation (there are others) median3
, Median3 takes the median of leftmost, middle, and rightmost elements
> An alternative is to choose the pivot randomly
> Another alternative is to choose the first element (but can be very bad. Why?)

Median 3

- Find median, min and max of $A[l e f t]$, A[right] and $A[($ left+right)/2]
- $A[l e f t]=\min$
- $A[r i g h t]=\max$
- $\mathrm{A}[$ right-1] $=$ median (called pivot)

Partitioning in-place

> Set pointers i and j to start and end of array except for pivot and last element
> Increment i until you hit element $A[i]>$ pivot

- "while A[i] < pivot then i++"
, Decrement juntil you hit element $A[j]$ < pivot
- "while $A[j]>$ pivot then j - -"
, Swap $A[i]$ and $A[j]$
- "if i< j then $\operatorname{swap}(A, i, j) "$
> Repeat until i and j cross
> Swap pivot (at $A[N-2])$ with $A[i]$

Example

Choose the pivot as the median of three

0	1	2	3	4	5	6	7	8	9
8	1	4	9	0	3	5	2	7	6

Median of $0,6,8$ is 6 . Pivot is 6

0	1	4	9	7	3	5	2	6	8

i
Place the largest at the right and the smallest at the left.
Swap pivot with next to last element.

Example

Move ito the right up to $A[i]$ larger than pivot. Move j to the left up to $A[j]$ smaller than pivot. Swap

Example

Recursive Quicksort

```
Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF s right then
    pivot := median3(A,left,right);
    pivotindex := Partition(A,left,right-1,pivot);
    Quicksort(A, left, pivotindex - 1);
    Quicksort(A, pivotindex + 1, right);
else
    Insertionsort(A,left,right);
}
```

Don't use quicksort for small arrays. CUTOFF = 10 is reasonable .

Quicksort Best Case Performance

- Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
, $\mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)$
- constant time if 0 or 1 element
, For N > 1, 2 recursive calls plus linear time for partitioning
, $\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{O}(\mathrm{N})$
- Same recurrence relation as Mergesort
> $T(N)=\underline{O(N \log N)}$

Analysis Upper Bound

```
\(\mathrm{T}(\mathrm{n}) \leq 2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{dn} \quad\) Assuming n is a power of 2
\[
\leq 2(2 T(n / 4)+d n / 2)+d n
\]
\[
=4 \mathrm{~T}(\mathrm{n} / 4)+2 \mathrm{dn}
\]
\[
\leq 4(2 \mathrm{~T}(\mathrm{n} / 8)+\mathrm{dn} / 4)+2 \mathrm{dn}
\]
\[
=8 \mathrm{~T}(\mathrm{n} / 8)+3 \mathrm{dn}
\]
\[
\vdots
\]
\[
\leq 2^{k} T\left(n / 2^{k}\right)+k d n
\]
\[
=n T(1)+k d n \quad \text { if } n=2^{k} \quad n=2^{k}, k=\log n
\]
\[
\leq \mathrm{cn}+\mathrm{dn} \log _{2} \mathrm{n}
\]
= O(n logn)
```


Quicksort Worst Case Performance

- Algorithm always chooses the worst pivot - one sub-array is empty at each recursion

$$
\begin{array}{ll}
> & \mathrm{T}(\mathrm{~N}) \\
\leq \mathrm{T}(\mathrm{~N}-1)+\mathrm{bN} \\
, & \leq \mathrm{T}(\mathrm{~N}-2)+\mathrm{b}(\mathrm{~N}-1)+\mathrm{bN} \\
, & \leq \mathrm{T}(2)+\mathrm{b}(3)+\ldots+\mathrm{bN} \\
, & \leq T(1)+\mathrm{b}(2+3+\ldots+\mathrm{N}) \\
\text {, } \mathrm{T}(\mathrm{~N}) & =\mathrm{O}\left(\mathrm{~N}^{2}\right)
\end{array}
$$

- Fortunately, average case performance is $\mathrm{O}(\mathrm{N} \log \mathrm{N})($ not a simple analysis)

Properties of Quicksort

- Not stable because of long distance swapping.
- No iterative version (without using a stack).
- Pure quicksort not good for small arrays.
- "In-place", but uses auxiliary storage because of recursive call (O(logn) space).
> Choose smallest partition first in the recursion
- O(n log n) average case performance, but $\mathrm{O}\left(\mathrm{n}^{2}\right)$ worst case performance.

Folklore

- "Quicksort is the best in-memory sorting algorithm."
- Truth
, Quicksort uses very few comparisons on average.
, Quicksort does have good performance in the memory hierarchy.
- Small footprint
- Good locality

