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Reading

• Reading  Chapter 11
› Sections 11.1 (a review)

› Sections 11.2 to 11.5
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Sorting

• Input: an array A of data records with a 
key value in each data record
› Some sorting algorithms, e.g. Mergesort work also on linked lists

• The values must be “comparable”
› For example: integers, strings

• Output: reorganize the elements of A 
such that

• For any i and j, if i < j then A[i] ≤A[j]
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Consistent Ordering

• The comparison function must provide a consistent 
ordering on the set of possible keys
› You can compare any two keys and get back an 

indication of  a < b, a > b, or a = b
› The comparison functions must be consistent

• If compare(a,b) says a<b, then compare(b,a) must say b>a
• If compare(a,b) says a=b, then compare(b,a) must say b=a 
• If compare(a,b) says a=b, then equals(a,b) and equals(b,a)

must say a=b 
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Why Sort?
• Sorting algorithms are among the most 

frequently used algorithms in computer 
science

• Allows binary search of an N-element 
array in O(log N) time

• Allows O(1) time access to kth largest 
element in the array for any k

• Allows easy detection of any duplicates
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Time

• How fast is the algorithm?
› The definition of a sorted array A says that for any 

i<j, A[i] < A[j]
› This means that you need to at least check on 

each element at the very minimum, I.e., at least 
O(N)

› And you could end up checking each element 
against every other element, which is O(N2)

› The big question is: How close to O(N) can you 
get?
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Faster is better!
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Space

• How much space does the sorting algorithm 
require in order to sort the collection of items?
› Is copying needed? O(n) additional space
› In-place sorting – no copying – O(1) additional 

space
› Somewhere in between for “temporary”, e.g. 

O(logn) space
› External memory sorting – data so large that does 

not fit in memory
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Stability

• Stability: Does it rearrange the order of input 
data records which have the same key value 
(duplicates)? 
› E.g. Phone book sorted by name. Now sort by 

county – is the list still sorted by name within each 
county?

› Extremely important property for databases 
› A stable sorting algorithm is one which does not 

rearrange the order of duplicate keys
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Example

5a 8 3a 5b 4 3b 2 3c

5a 83a 5b43b2 3c

5a 8 3a 5b 4 3b 2 3c

5a 83a 5b43b2 3c

Stable Sort Unstable Sort
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Bubble Sort

• “Bubble” elements to to their proper place in 
the array by comparing elements i and i+1, 
and swapping if A[i] > A[i+1]
› Bubble every element towards its correct position

• last position has the largest element
• then bubble every element except the last one towards 

its correct position
• then repeat until done or until the end of the quarter, 

whichever comes first ...
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Bubblesort
bubble(A[1..n]: integer array, n : integer): {
i, j : integer;
for i = 1 to n-1 do 
for j = 2 to n–i+1 do

if A[j-1] > A[j] then SWAP(A[j-1],A[j]);
}

SWAP(a,b) :  {
t :integer; 
t:=a; a:=b; b:=t; 

}
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Put the largest element in its 
place

1 2 3 8 7 9 10 12 23 18 15 16 17 14

2 3larger value? 8 8

7 8

swap

1 2 3 7 8 9 10 12 23 18 15 16 17 14

9 10 12 23

18 23

swap

23

15 16 17 14

18 15

swap

23 16 17 14

18 15

swap

16 23 17 14

18 15

swap

16 17 23 14

18 15

swap

16 17 14 23

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

9 10 12 23 18 15 16 17 141 2 3
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Bubble Sort: Just Say No
• “Bubble” elements to their proper place in 

the array by comparing elements i and i+1, 
and swapping if A[i] > A[i+1]

• We bubblize for i=1 to n (i.e, n times)
• Each bubblization is a loop that makes n-i 

comparisons
• This is O(n2)
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Insertion Sort

• What if first k elements of array are 
already sorted?
› 4, 7, 12, 5, 19, 16

• We can shift the tail of the sorted elements 
list down and then insert next element into 
proper position and we get k+1 sorted 
elements
› 4, 5, 7, 12, 19, 16
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Insertion Sort
InsertionSort(A[1..N]: integer array, N: integer) {         

i, j, temp: integer ;
for i = 2 to N {
temp := A[i];
j := i-1;
while j > 1 and A[j-1] > temp {

A[j] := A[j-1]; j := j–1;}
A[j] = temp;            

}        
}

• Is Insertion sort in place?  Stable?  Running time = ?
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Insertion Sort Characteristics

• In place and Stable
• Running time

› Worst case is O(N2)
• reverse order input
• must copy every element every time

• Good sorting algorithm for almost sorted 
data
› Each item is close to where it belongs in 

sorted order.
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Inversions

• An inversion is a pair of elements in wrong 
order
› i < j but A[i] > A[j]

• By definition, a sorted array has no 
inversions

• So you can think of sorting as the process 
of removing inversions in the order of the 
elements
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Inversions

• Our simple sorting algorithms so far swap 
adjacent elements (explicitly or implicitly) 
and remove just 1 inversion at a time
› Their running time is proportional to number 

of inversions in array
• Given N distinct keys, the maximum 

possible number of inversions is

2
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Inversions and Adjacent Swap 
Sorts

• "Average" list will contain half the max 
number of inversions = 
› So the average running time of Insertion 

sort is O(N2) 
• Any sorting algorithm that only swaps 

adjacent elements requires O(N2) time 
because each swap removes only one 
inversion (lower bound)

( )
4

n1n −
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“Divide and Conquer” Sorting 
algorithms

• Very important strategy in computer science:
› Divide problem into smaller parts
› Independently solve the parts
› Combine these solutions to get overall solution

• Idea 1: Divide array into two halves, 
recursively sort left and right halves, then 
merge two halves Mergesort

• Idea 2 : Partition array into items that are 
“small” and items that are “large”, then 
recursively sort the two sets Quicksort
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Quicksort (1962)

• Due to Sir Tony 
Hoare (1934-)
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Quicksort

• Quicksort uses a divide and conquer strategy, 
but does not require the O(N) extra space 
that MergeSort does
› Partition array into left and right sub-arrays

• Choose an element of the array, called pivot
• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

› Recursively sort left and right sub-arrays
› The elements “remain” in the array
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“Four easy steps”

• To sort an array S
1. If the number of elements in S is 0 or 1, 

then return.  The array is sorted.
2. Pick an element v in S.  This is the pivot

value.
3. Partition S-{v} into two disjoint subsets, S1

= {all values x ≤v}, and S2 = {all values x≥v}.
4. Return QuickSort(S1), v, QuickSort(S2)
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The steps of QuickSort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13 8192

43 65
31

5726

750S1 S2 partition S

13 4331 57260

S1
81 927565

S2
QuickSort(S1) and

QuickSort(S2)

13 4331 57260 65 81 9275S Voila!  S is sorted
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Details, details
• Implementing the actual partitioning
• Picking the pivot

› want a value that will cause |S1| and |S2| to 
be non-zero, and close to equal in size if 
possible

• Choosing the order of the recursive 
calls
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Quicksort Partitioning
• Need to partition the array into left and right sub-

arrays
› the elements in left sub-array are ≤pivot
› elements in right sub-array are ≥ pivot

• How do the elements get to the correct partition?
› Choose an element from the array as the pivot
› Make one pass through the rest of the array and 

swap as needed to put elements in partitions
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Partitioning:Choosing the pivot
• One implementation (there are others) 

median3 
› Median3 takes the median of leftmost, 

middle, and rightmost elements
› An alternative is to choose the pivot 

randomly 
› Another alternative is to choose the first 

element (but can be very bad. Why?)
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Median 3

• Find median, min and max of A[left], 
A[right] and A[(left+right)/2]

• A[left] = min
• A[right] = max
• A[right-1] = median (called pivot)
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Partitioning in-place

› Set pointers i and j to start and end of array except 
for pivot and last element

› Increment i until you hit element A[i] > pivot
• “while A[i] < pivot then i++” 

› Decrement j until you hit element A[j] < pivot 
• “while A[j] > pivot then j- -”

› Swap A[i] and A[j]
• “if i< j then swap(A,i,j)”

› Repeat until i and j cross
› Swap pivot (at A[N-2]) with A[i]
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8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

i j

Example

Place the largest at the right
and the smallest at the left.
Swap pivot with next to last element.

Median of 0, 6, 8 is 6. Pivot is 6

Choose the pivot as the median of three
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Example

0 1 4 9 7 3 5 2 6 8

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

i j

Move i to the right up to A[i]  larger than pivot.
Move j to the left up to A[j] smaller than pivot.
Swap
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0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 86

ij

0 1 4 2 5 3 6 9 7 8

ij

S1 < pivot pivot S2 > pivot

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 86

i j

0 1 4 2 5 3 7 9 6 8

i j

Example

Cross-over i > j
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Recursive Quicksort
Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF ≤ right then
pivot := median3(A,left,right);
pivotindex := Partition(A,left,right-1,pivot);
Quicksort(A, left, pivotindex – 1);
Quicksort(A, pivotindex + 1, right);

else
Insertionsort(A,left,right);

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.
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Quicksort Best Case 
Performance

• Algorithm always chooses best pivot 
and splits sub-arrays in half at each 
recursion
› T(0) = T(1) = O(1)

• constant time if 0 or 1 element
› For N > 1, 2 recursive calls plus linear time 

for partitioning
› T(N) = 2T(N/2) + O(N)

• Same recurrence relation as Mergesort
› T(N) = O(N log N)
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Analysis Upper Bound
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Quicksort Worst Case 
Performance

• Algorithm always chooses the worst pivot 
– one sub-array is empty at each 
recursion
› T(N) ≤T(N-1) + bN
› ≤T(N-2) + b(N-1) + bN
› ≤T(2) + b(3)+ … + bN
› ≤T(1) +b(2 + 3 +  … + N)
› T(N) = O(N2)

• Fortunately, average case performance
is    O(N log N) (not a simple analysis)
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Properties of Quicksort

• Not stable because of long distance 
swapping.

• No iterative version (without using a stack).
• Pure quicksort not good for small arrays.
• “In-place”, but uses auxiliary storage because 

of recursive call (O(logn) space).
› Choose smallest partition first in the recursion

• O(n log n) average case performance, but 
O(n2) worst case performance.
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Folklore

• “Quicksort is the best in-memory sorting 
algorithm.”

• Truth
› Quicksort uses very few comparisons on 

average.
› Quicksort does have good performance in 

the memory hierarchy.
• Small footprint
• Good locality


