
Sorting

CSE 373
Data Structures

Sorting 2

Reading

• Reading Chapter 11
› Sections 11.1 (a review)

› Sections 11.2 to 11.5

Sorting 3

Sorting

• Input: an array A of data records with a
key value in each data record
› Some sorting algorithms, e.g. Mergesort work also on linked lists

• The values must be “comparable”
› For example: integers, strings

• Output: reorganize the elements of A
such that

• For any i and j, if i < j then A[i] ≤A[j]

Sorting 4

Consistent Ordering

• The comparison function must provide a consistent
ordering on the set of possible keys
› You can compare any two keys and get back an

indication of a < b, a > b, or a = b
› The comparison functions must be consistent

• If compare(a,b) says a<b, then compare(b,a) must say b>a
• If compare(a,b) says a=b, then compare(b,a) must say b=a
• If compare(a,b) says a=b, then equals(a,b) and equals(b,a)

must say a=b

Sorting 5

Why Sort?
• Sorting algorithms are among the most

frequently used algorithms in computer
science

• Allows binary search of an N-element
array in O(log N) time

• Allows O(1) time access to kth largest
element in the array for any k

• Allows easy detection of any duplicates

Sorting 6

Time

• How fast is the algorithm?
› The definition of a sorted array A says that for any

i<j, A[i] < A[j]
› This means that you need to at least check on

each element at the very minimum, I.e., at least
O(N)

› And you could end up checking each element
against every other element, which is O(N2)

› The big question is: How close to O(N) can you
get?

n2

n·log2n

n

log2n

Faster is better!

Sorting 8

Space

• How much space does the sorting algorithm
require in order to sort the collection of items?
› Is copying needed? O(n) additional space
› In-place sorting – no copying – O(1) additional

space
› Somewhere in between for “temporary”, e.g.

O(logn) space
› External memory sorting – data so large that does

not fit in memory

Sorting 9

Stability

• Stability: Does it rearrange the order of input
data records which have the same key value
(duplicates)?
› E.g. Phone book sorted by name. Now sort by

county – is the list still sorted by name within each
county?

› Extremely important property for databases
› A stable sorting algorithm is one which does not

rearrange the order of duplicate keys

Sorting 10

Example

5a 8 3a 5b 4 3b 2 3c

5a 83a 5b43b2 3c

5a 8 3a 5b 4 3b 2 3c

5a 83a 5b43b2 3c

Stable Sort Unstable Sort

Sorting 11

Bubble Sort

• “Bubble” elements to to their proper place in
the array by comparing elements i and i+1,
and swapping if A[i] > A[i+1]
› Bubble every element towards its correct position

• last position has the largest element
• then bubble every element except the last one towards

its correct position
• then repeat until done or until the end of the quarter,

whichever comes first ...

Sorting 12

Bubblesort
bubble(A[1..n]: integer array, n : integer): {
i, j : integer;
for i = 1 to n-1 do
for j = 2 to n–i+1 do

if A[j-1] > A[j] then SWAP(A[j-1],A[j]);
}

SWAP(a,b) : {
t :integer;
t:=a; a:=b; b:=t;

}

Sorting 13

Put the largest element in its
place

1 2 3 8 7 9 10 12 23 18 15 16 17 14

2 3larger value? 8 8

7 8

swap

1 2 3 7 8 9 10 12 23 18 15 16 17 14

9 10 12 23

18 23

swap

23

15 16 17 14

18 15

swap

23 16 17 14

18 15

swap

16 23 17 14

18 15

swap

16 17 23 14

18 15

swap

16 17 14 23

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

9 10 12 23 18 15 16 17 141 2 3

Sorting 14

Bubble Sort: Just Say No
• “Bubble” elements to their proper place in

the array by comparing elements i and i+1,
and swapping if A[i] > A[i+1]

• We bubblize for i=1 to n (i.e, n times)
• Each bubblization is a loop that makes n-i

comparisons
• This is O(n2)

Sorting 15

Insertion Sort

• What if first k elements of array are
already sorted?
› 4, 7, 12, 5, 19, 16

• We can shift the tail of the sorted elements
list down and then insert next element into
proper position and we get k+1 sorted
elements
› 4, 5, 7, 12, 19, 16

Sorting 16

Insertion Sort
InsertionSort(A[1..N]: integer array, N: integer) {

i, j, temp: integer ;
for i = 2 to N {
temp := A[i];
j := i-1;
while j > 1 and A[j-1] > temp {

A[j] := A[j-1]; j := j–1;}
A[j] = temp;

}
}

• Is Insertion sort in place? Stable? Running time = ?

Sorting 17

Insertion Sort Characteristics

• In place and Stable
• Running time

› Worst case is O(N2)
• reverse order input
• must copy every element every time

• Good sorting algorithm for almost sorted
data
› Each item is close to where it belongs in

sorted order.

Sorting 18

Inversions

• An inversion is a pair of elements in wrong
order
› i < j but A[i] > A[j]

• By definition, a sorted array has no
inversions

• So you can think of sorting as the process
of removing inversions in the order of the
elements

Sorting 19

Inversions

• Our simple sorting algorithms so far swap
adjacent elements (explicitly or implicitly)
and remove just 1 inversion at a time
› Their running time is proportional to number

of inversions in array
• Given N distinct keys, the maximum

possible number of inversions is

2
1)n-(ni1...2)(n1)(n

1n

1i
==++−+− ∑

−

=

Sorting 20

Inversions and Adjacent Swap
Sorts

• "Average" list will contain half the max
number of inversions =
› So the average running time of Insertion

sort is O(N2)
• Any sorting algorithm that only swaps

adjacent elements requires O(N2) time
because each swap removes only one
inversion (lower bound)

()
4

n1n −

Sorting 21

“Divide and Conquer” Sorting
algorithms

• Very important strategy in computer science:
› Divide problem into smaller parts
› Independently solve the parts
› Combine these solutions to get overall solution

• Idea 1: Divide array into two halves,
recursively sort left and right halves, then
merge two halves Mergesort

• Idea 2 : Partition array into items that are
“small” and items that are “large”, then
recursively sort the two sets Quicksort

Sorting 22

Quicksort (1962)

• Due to Sir Tony
Hoare (1934-)

Sorting 23

Quicksort

• Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space
that MergeSort does
› Partition array into left and right sub-arrays

• Choose an element of the array, called pivot
• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

› Recursively sort left and right sub-arrays
› The elements “remain” in the array

Sorting 24

“Four easy steps”

• To sort an array S
1. If the number of elements in S is 0 or 1,

then return. The array is sorted.
2. Pick an element v in S. This is the pivot

value.
3. Partition S-{v} into two disjoint subsets, S1

= {all values x ≤v}, and S2 = {all values x≥v}.
4. Return QuickSort(S1), v, QuickSort(S2)

Sorting 25

The steps of QuickSort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13 8192

43 65
31

5726

750S1 S2 partition S

13 4331 57260

S1
81 927565

S2
QuickSort(S1) and

QuickSort(S2)

13 4331 57260 65 81 9275S Voila! S is sorted

Sorting 26

Details, details
• Implementing the actual partitioning
• Picking the pivot

› want a value that will cause |S1| and |S2| to
be non-zero, and close to equal in size if
possible

• Choosing the order of the recursive
calls

Sorting 27

Quicksort Partitioning
• Need to partition the array into left and right sub-

arrays
› the elements in left sub-array are ≤pivot
› elements in right sub-array are ≥ pivot

• How do the elements get to the correct partition?
› Choose an element from the array as the pivot
› Make one pass through the rest of the array and

swap as needed to put elements in partitions

Sorting 28

Partitioning:Choosing the pivot
• One implementation (there are others)

median3
› Median3 takes the median of leftmost,

middle, and rightmost elements
› An alternative is to choose the pivot

randomly
› Another alternative is to choose the first

element (but can be very bad. Why?)

Sorting 29

Median 3

• Find median, min and max of A[left],
A[right] and A[(left+right)/2]

• A[left] = min
• A[right] = max
• A[right-1] = median (called pivot)

Sorting 30

Partitioning in-place

› Set pointers i and j to start and end of array except
for pivot and last element

› Increment i until you hit element A[i] > pivot
• “while A[i] < pivot then i++”

› Decrement j until you hit element A[j] < pivot
• “while A[j] > pivot then j- -”

› Swap A[i] and A[j]
• “if i< j then swap(A,i,j)”

› Repeat until i and j cross
› Swap pivot (at A[N-2]) with A[i]

Sorting 31

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

i j

Example

Place the largest at the right
and the smallest at the left.
Swap pivot with next to last element.

Median of 0, 6, 8 is 6. Pivot is 6

Choose the pivot as the median of three

Sorting 32

Example

0 1 4 9 7 3 5 2 6 8

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

i j

Move i to the right up to A[i] larger than pivot.
Move j to the left up to A[j] smaller than pivot.
Swap

Sorting 33

0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 86

ij

0 1 4 2 5 3 6 9 7 8

ij

S1 < pivot pivot S2 > pivot

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 86

i j

0 1 4 2 5 3 7 9 6 8

i j

Example

Cross-over i > j

Sorting 34

Recursive Quicksort
Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF ≤ right then
pivot := median3(A,left,right);
pivotindex := Partition(A,left,right-1,pivot);
Quicksort(A, left, pivotindex – 1);
Quicksort(A, pivotindex + 1, right);

else
Insertionsort(A,left,right);

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

Sorting 35

Quicksort Best Case
Performance

• Algorithm always chooses best pivot
and splits sub-arrays in half at each
recursion
› T(0) = T(1) = O(1)

• constant time if 0 or 1 element
› For N > 1, 2 recursive calls plus linear time

for partitioning
› T(N) = 2T(N/2) + O(N)

• Same recurrence relation as Mergesort
› T(N) = O(N log N)

Sorting 36

Analysis Upper Bound

logn)O(n
nlogdncn

2n ifkdnnT(1)
kdn)T(n/22

3dn8T(n/8)
2dndn/4)4(2T(n/8)

2dn4T(n/4)
dn dn/2)2(2T(n/4)

2 of power a is n Assumingdn2T(n/2)T(n)

2

k

kk

=
+≤

=+=
+≤

+=
++≤

+=
++≤

+≤

M

n = 2k, k = log n

Sorting 37

Quicksort Worst Case
Performance

• Algorithm always chooses the worst pivot
– one sub-array is empty at each
recursion
› T(N) ≤T(N-1) + bN
› ≤T(N-2) + b(N-1) + bN
› ≤T(2) + b(3)+ … + bN
› ≤T(1) +b(2 + 3 + … + N)
› T(N) = O(N2)

• Fortunately, average case performance
is O(N log N) (not a simple analysis)

Sorting 38

Properties of Quicksort

• Not stable because of long distance
swapping.

• No iterative version (without using a stack).
• Pure quicksort not good for small arrays.
• “In-place”, but uses auxiliary storage because

of recursive call (O(logn) space).
› Choose smallest partition first in the recursion

• O(n log n) average case performance, but
O(n2) worst case performance.

Sorting 39

Folklore

• “Quicksort is the best in-memory sorting
algorithm.”

• Truth
› Quicksort uses very few comparisons on

average.
› Quicksort does have good performance in

the memory hierarchy.
• Small footprint
• Good locality

