
CSE 373
Data Structures

B-trees 2

• Reading Chapter 14
› Section 14.3

› See also (2-4) trees Chapter 10 Section 10.4

B-trees 3

• Invented in 1972 by
Rudolf Bayer (-) and Ed McCreight(-)

B-trees 4

• Example: B-tree of order 3 has 2 or 3
children per node

• Search for 8

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

B-trees 5

B-Trees are multi-way search trees commonly used in database
systems or other applications where data is stored externally on
disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:
1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between M/2

and M children.
3. All leaves are at the same depth.

All data records are stored at the leaves.
Internal nodes have “keys” guiding to the leaves.
Leaves store between M/2 and M data records.

B-trees 6

Each (non-leaf) internal node of a B-tree has:
› Between M/2 and M children.
› up to M-1 keys k1 k2 kM-1

Keys are ordered so that:
k1 k2 kM-1

kM-1. ki-1 kik1

B-trees 7

• There are several definitions
• What was in the previous slide is the

original def.
• The textbook has a slightly different one

B-trees 8

Children of each internal node are "between" the items in that node.
Suppose subtree Ti is the ith child of the node:

all keys in Ti must be between keys ki-1 and ki

i.e. ki-1 Ti ki

ki-1 is the smallest key in Ti

All keys in first subtree T1 k1

All keys in last subtree TM kM-1

k1

TTii

. kki-1 kkii

TTMTT11

kkM-1

.

B-trees 9

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

• B-tree of order 3: also known as 2-3 tree (2 to 3
children)

• Examples: Search for 9, 14, 12
• Note: If leaf nodes are connected as a Linked List, B-

tree is called a B+ tree – Allows sorted list to be
accessed easily

- means empty slot

B-trees 10

• Insert X: Do a Find on X and find appropriate leaf node
› If leaf node is not full, fill in empty slot with X

• E.g. Insert 5

› If leaf node is full, split leaf node and adjust parents up to root
node

• E.g. Insert 9 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

B-trees 11

3 4 5 6 7 8 9 11 12 13 14 17 18

6 - 11 -
17 -

11 13

B-trees 12

• Delete X : Do a find and remove from leaf
› Leaf underflows – borrow from a neighbor

• E.g. 11

› Leaf underflows and can’t borrow – merge nodes, delete
parent

• E.g. 17 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

B-trees 13

“8” was borrowed from neighbor. Note the change in the
parent

13:-

6:8

3 4 6 7 8 12 13 14 17 18

17:-

B-trees 14

13 14 188 12

13 -

3 4 6 7

6 -

8 -

B-trees 15

• For a B-Tree of order M
› Each internal node has up to M-1 keys to search

› Each internal node has between M/2 and M children
› Depth of B-Tree storing N items is O(log M/2 N)

• Find: Run time is:
› O(log M) to binary search which branch to take at each

node. But M is small compared to N.
› Total time to find an item is O(depth*log M) = O(log N)

B-trees 16

• Problem with Binary Search Trees: Must keep tree
balanced to allow fast access to stored items

• AVL trees: Insert/Delete operations keep tree balanced
• Splay trees: Repeated Find operations produce

balanced trees
• Multi-way search trees (e.g. B-Trees): More than two

children
› per node allows shallow trees; all leaves are at the

same depth
› keeping tree balanced at all times

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

