AVL Trees

CSE 373

Data Structures

Readings

- Reading Chapter 10
 - > Section 10.2

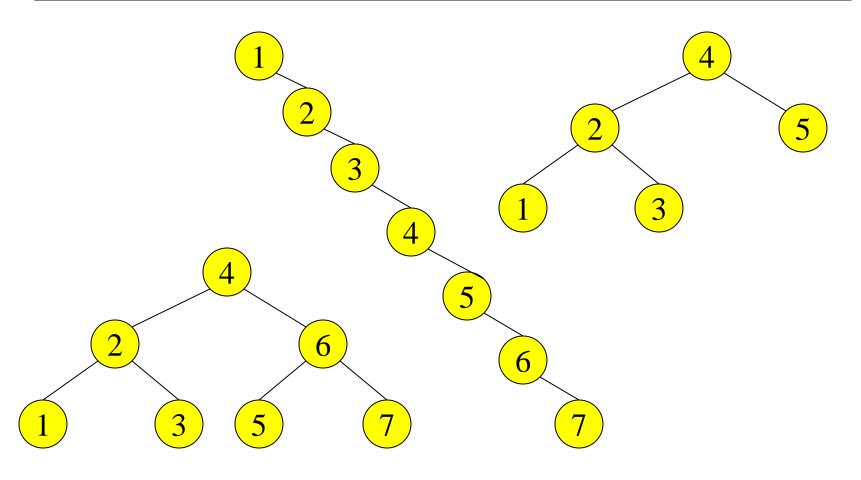
Binary Search Tree - Best Time

- All BST operations are O(d), where d is tree depth
- minimum d is d = [log₂N] for a binary tree with N nodes
 - > What is the best case tree?
 - What is the worst case tree?
- So, best case running time of BST operations is O(log N)

Binary Search Tree - Worst Time

- Worst case running time is O(N)
 - What happens when you Insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - > Problem: Lack of "balance":
 - compare depths of left and right subtree
 - Unbalanced degenerate tree

Balanced and unbalanced BST



Approaches to balancing trees

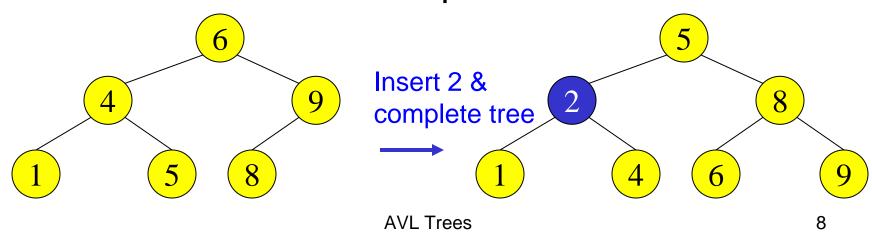
- Don't balance
 - May end up with some nodes very deep
- Strict balance
 - The tree must always be balanced perfectly
- Pretty good balance
 - Only allow a little out of balance
- Adjust on access
 - Self-adjusting

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - > Weight-balanced trees
 - Red-black trees;
 - Splay trees and other self-adjusting trees
 - B-trees and other (e.g. 2-4 trees) multiway search trees

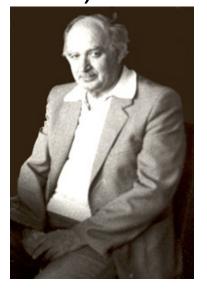
Perfect Balance

- Want a complete tree after every operation
 - tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree



AVL Trees (1962)

- Named after 2 Russian mathematicians
- Georgii Adelson-Velsky (1922 ?)
- Evgenii Mikhailovich Landis (1921-1997)



AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
 - > height(left subtree) height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - Store current heights in each node

Height of an AVL Tree

- N(h) = minimum number of nodes in an AVL tree of height h.
- Basis

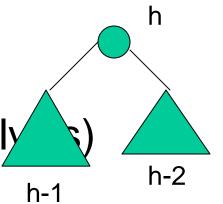
$$N(0) = 1, N(1) = 2$$

Induction

$$N(h) = N(h-1) + N(h-2) + 1$$

Solution (recall Fibonacci analy

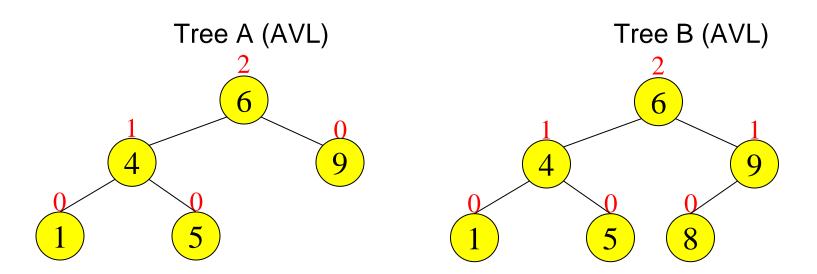
$$\rightarrow$$
 N(h) \geq ϕ^h ($\phi \approx 1.62$)



Height of an AVL Tree

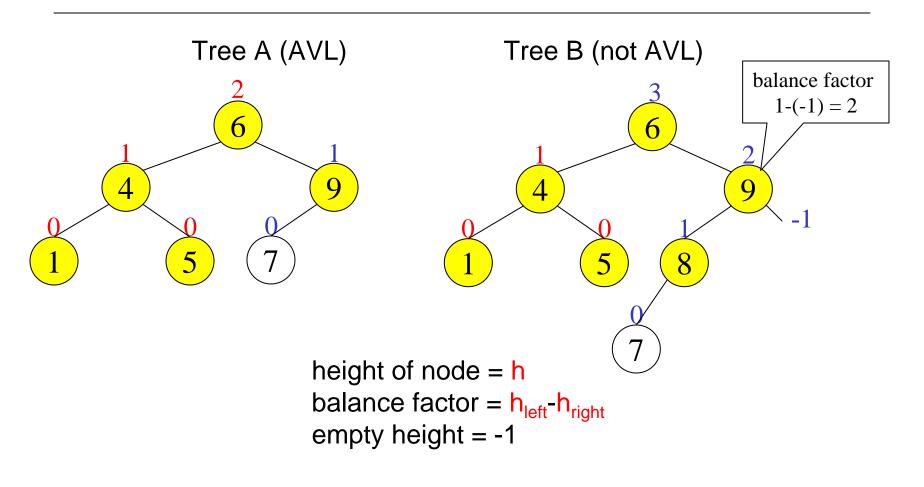
- $N(h) \ge \phi^h \quad (\phi \approx 1.62)$
- Suppose we have n nodes in an AVL tree of height h.
 - \rightarrow n \geq N(h)
 - $n \ge \phi^h$ hence $\log_{\phi} n \ge h$ (relatively well balanced tree!!)
 - \rightarrow h \leq 1.44 log₂n (i.e., Find takes O(logn))

Node Heights



height of node = hbalance factor = h_{left} - h_{right} empty height = -1

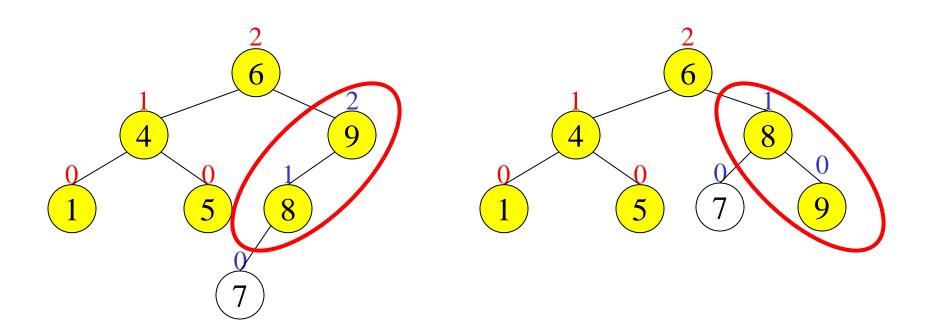
Node Heights after Insert 7



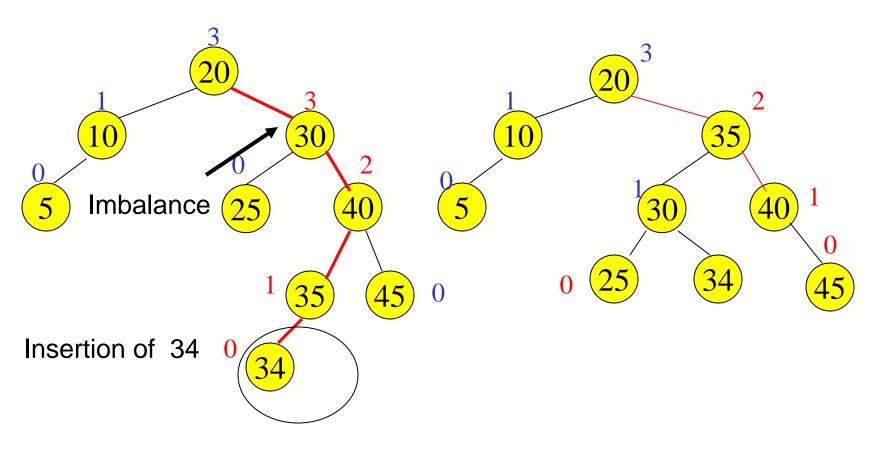
Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left}h_{right}) is 2 or –2, adjust tree by *rotation* around the node

Single Rotation in an AVL Tree



Double rotation



Insertions in AVL Trees

Let the node that needs rebalancing be α .

There are 4 cases:

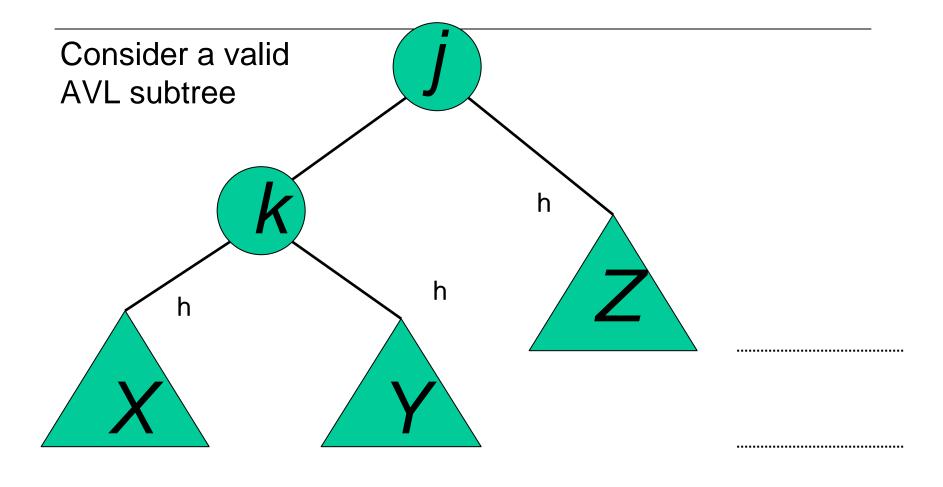
Outside Cases (require single rotation):

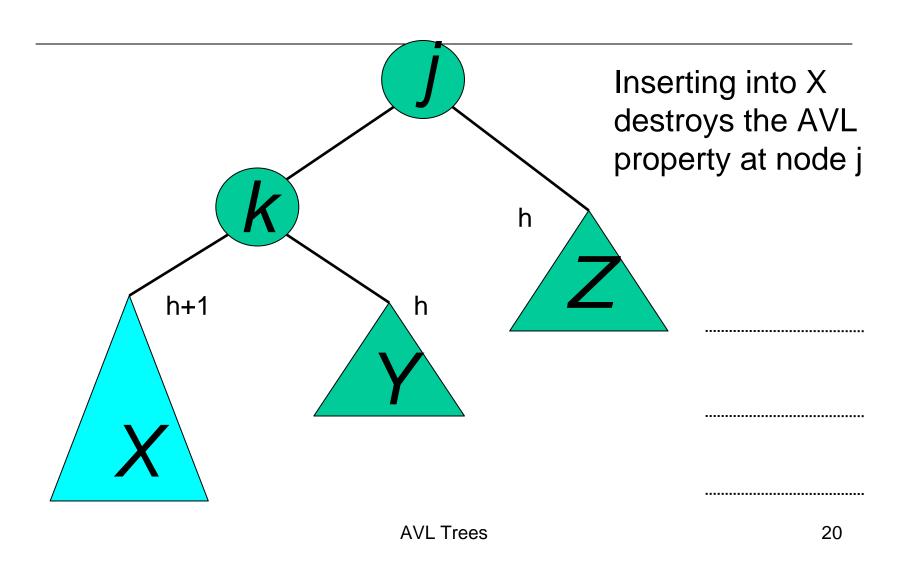
- 1. Insertion into left subtree of left child of α .
- 2. Insertion into right subtree of right child of α .

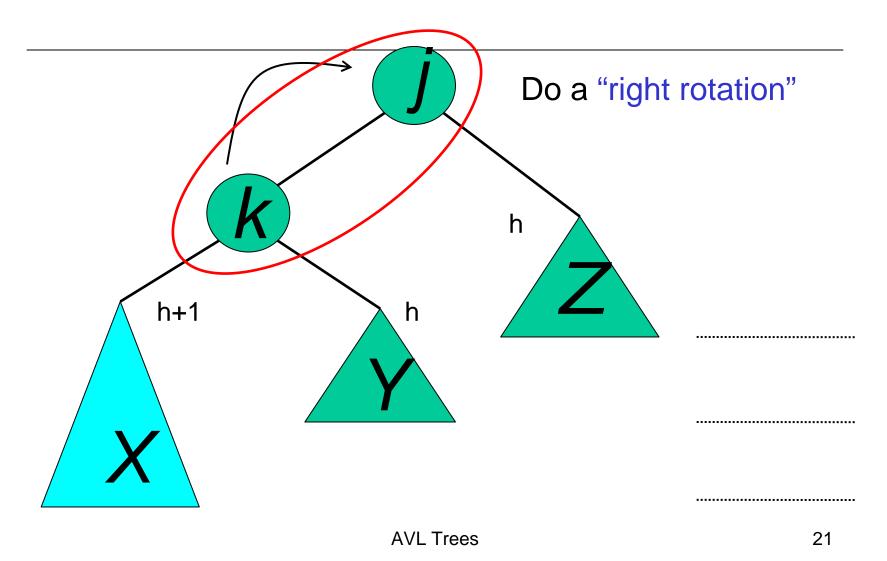
Inside Cases (require double rotation):

- 3. Insertion into right subtree of left child of α .
- 4. Insertion into left subtree of right child of α .

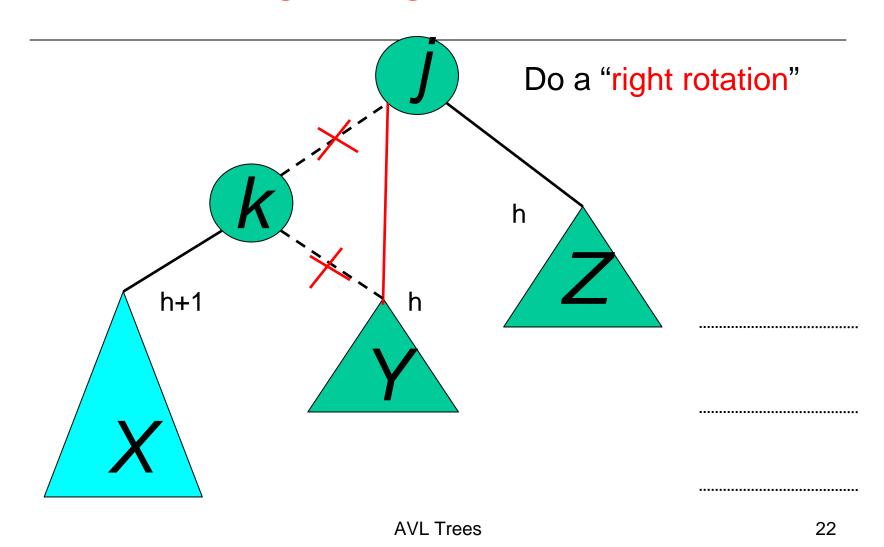
The rebalancing is performed through four separate rotation algorithms.



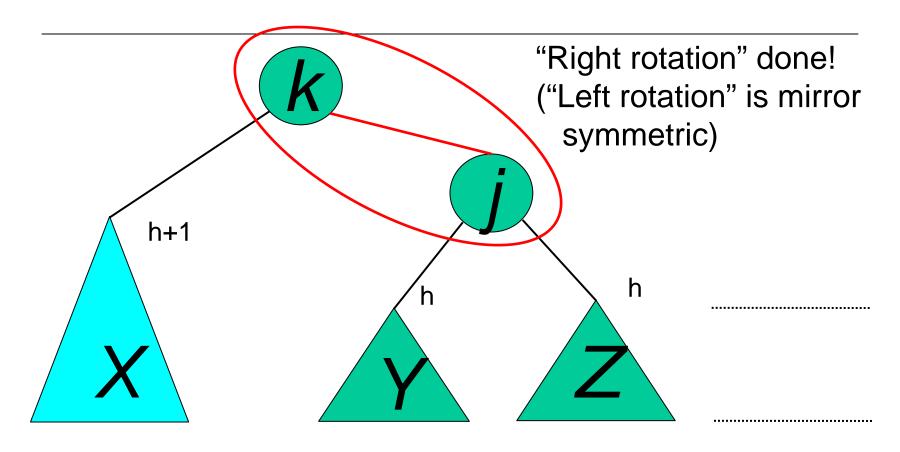




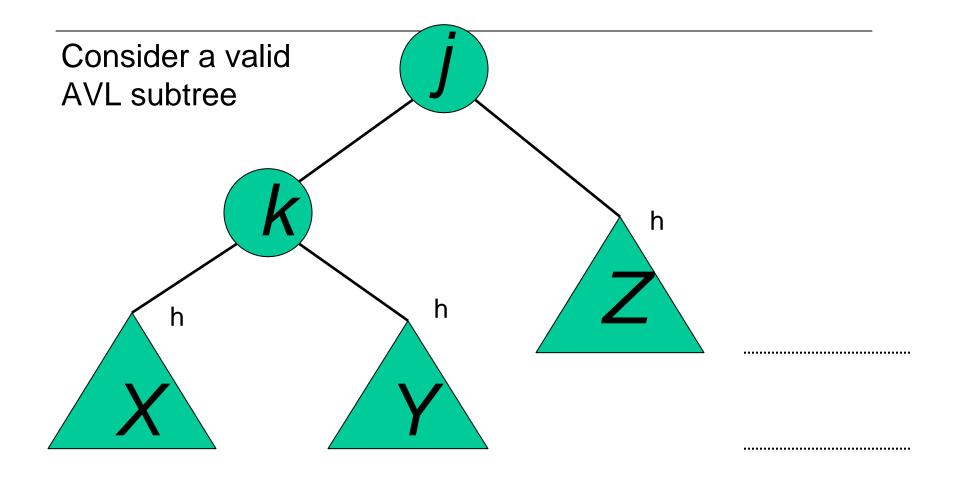
Single right rotation

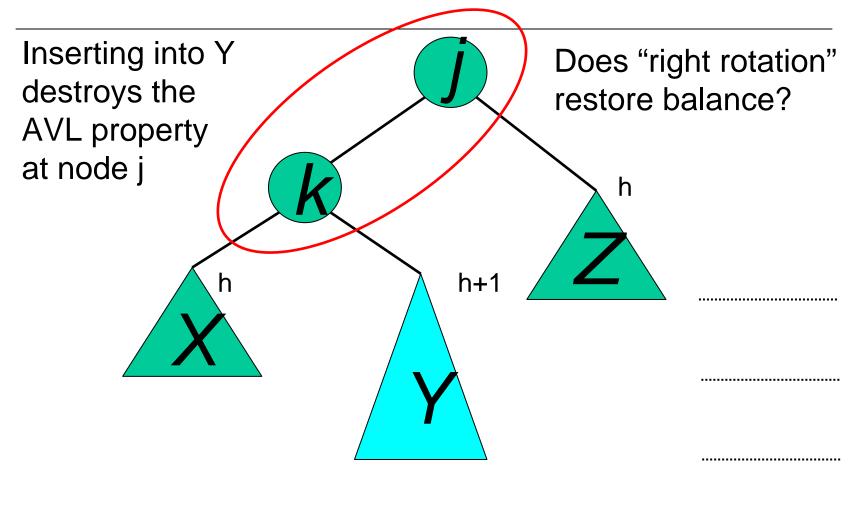


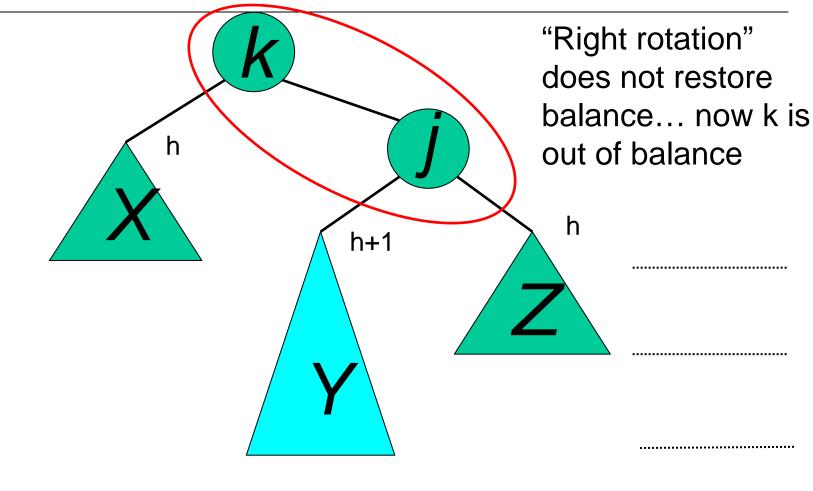
Outside Case Completed

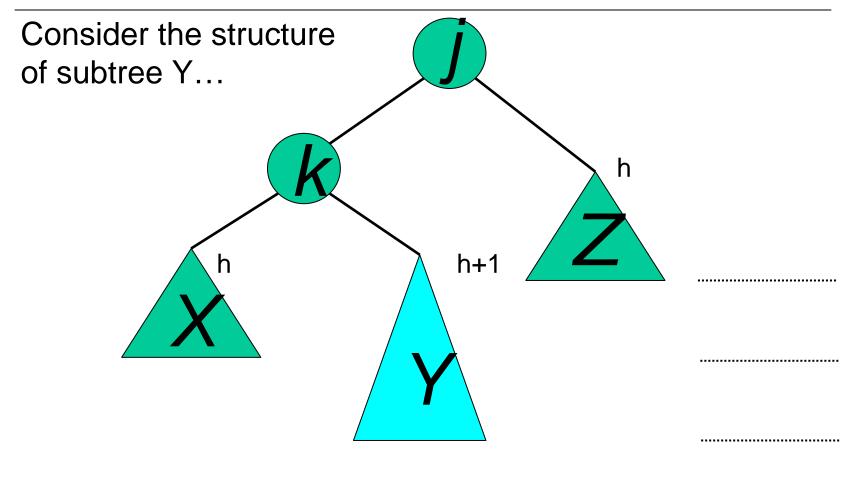


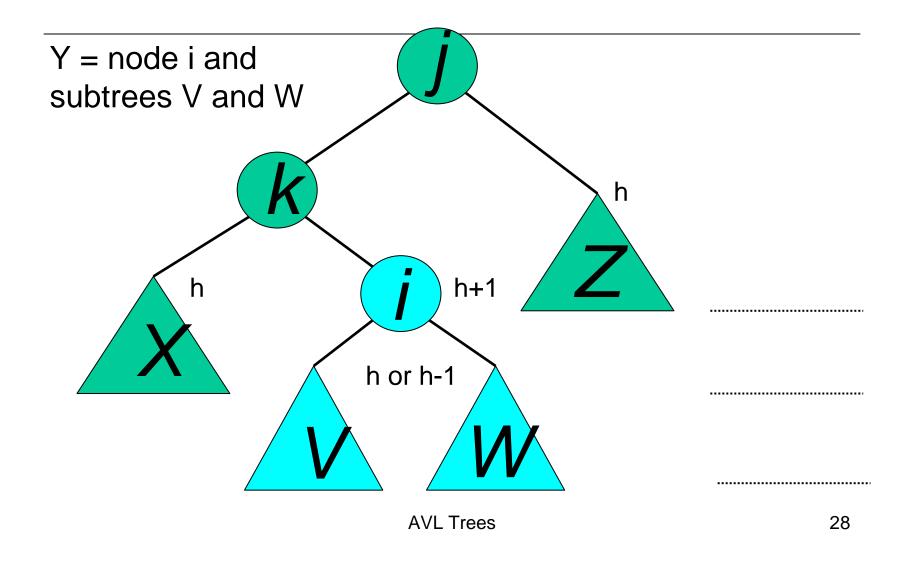
AVL property has been restored!

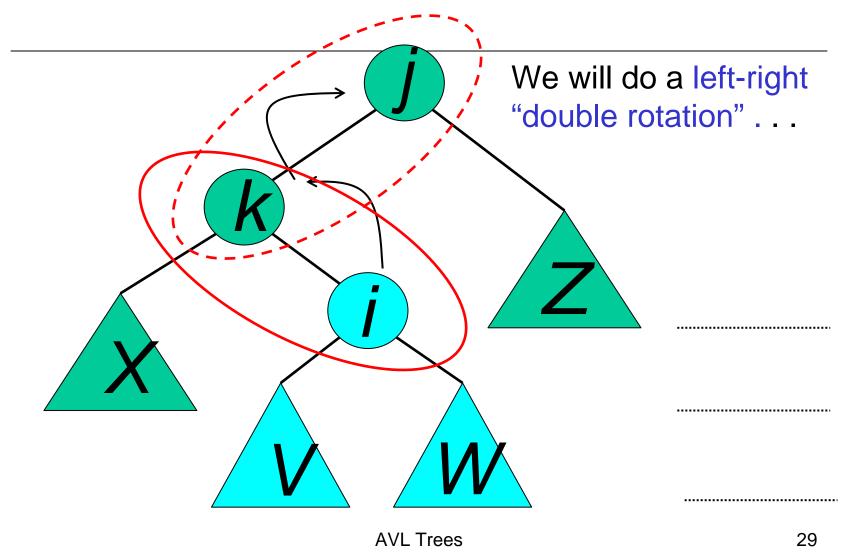




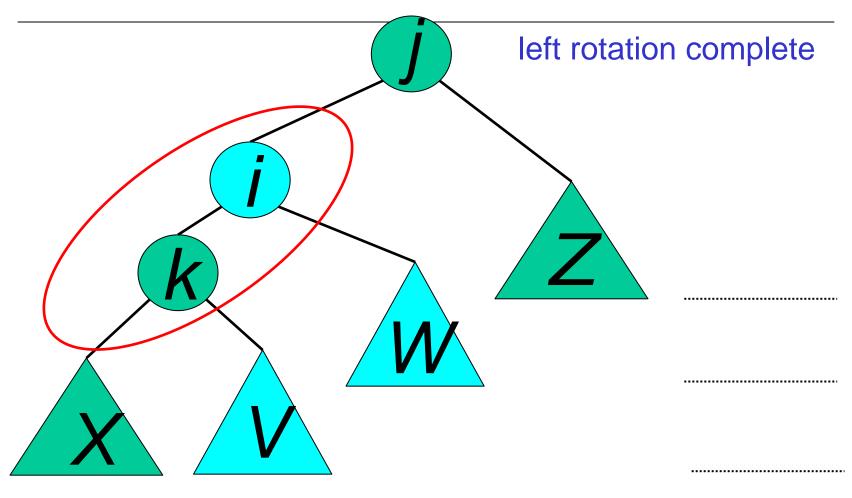




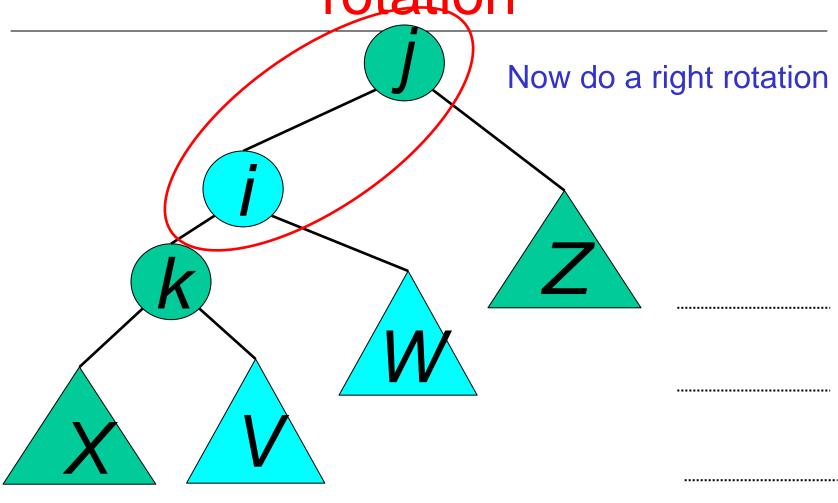




Double rotation: first rotation

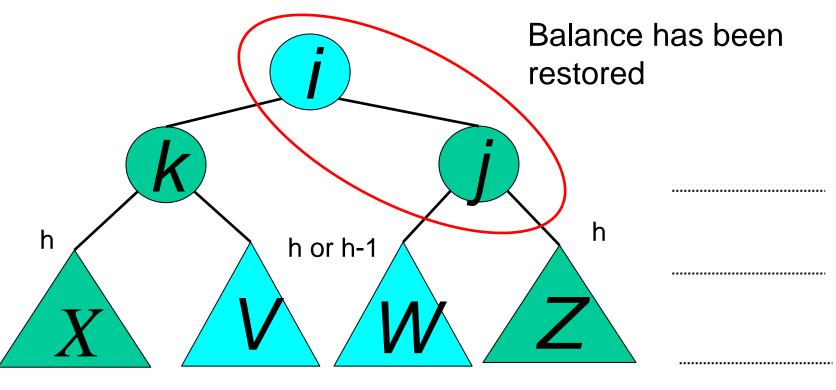


Double rotation : second rotation

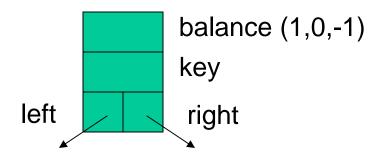


Double rotation : second rotation

right rotation complete



Implementation



You can either keep the height or just the difference in height, i.e. the balance factor; this has to be modified on the path of insertion even if you don't perform rotations

Once you have performed a rotation (single or double) you won't need to go back up the tree

Single Rotation

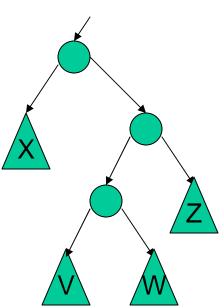
```
RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}

You also need to
modify the heights
or balance factors
```

of n and p

Double Rotation

```
DoubleRotateFromRight(n : reference node pointer) {
RotateFromLeft(n.right);
RotateFromRight(n);
}
```



Insert in AVL trees

```
Insert(T : tree pointer, x : element) : {
if T = null then
  T := new tree; T.data := x; height := 0;
case
  T.data = x : return ; //Duplicate do nothing
  T.data > x : return Insert(T.left, x);
               if ((height(T.left) - height(T.right)) = 2){
                  if (T.left.data > x ) then //outside case
                         T = RotatefromLeft (T);
                  else
                                              //inside case
                         T = DoubleRotatefromLeft (T);}
  T.data < x : return Insert(T.right, x);
                code similar to the left case
Endcase
  T.height := max(height(T.left),height(T.right)) +1;
  return;
```

AVL Tree Deletion

- Similar but more complex than insertion
 - Rotations and double rotations needed to rebalance
 - Imbalance may propagate upward so that many rotations may be needed.

Pros and Cons of AVL Trees

Arguments for AVL trees:

- Search is O(log N) since AVL trees are always balanced.
- Insertion and deletions are also O(logn)
- 3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

- 1. Difficult to program & debug; more space for balance factor.
- 2. Asymptotically faster but rebalancing costs time.
- 3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
- 4. May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

Non-recursive insertion or the hacker's delight

- Key observations;
 - At most one rotation
 - Balance factor: 2 bits are sufficient (-1 left, 0 equal, +1 right)
 - There is one node on the path of insertion, say S, that is "critical". It is the node where a rotation can occur and nodes above it won't have their balance factors modified

Non-recursive insertion

Step 1 (Insert and find S):

- Find the place of insertion and identify the last node S on the path whose BF ≠ 0 (if all BF on the path = 0, S is the root).
- > Insert

Step 2 (Adjust BF's)

Restart from the child of S on the path of insertion. (note: all the nodes from that node on on the path of insertion have BF = 0.)If the path traversed was left (right) set BF to -1 (+1) and repeat until you reach a null link (at the place of insertion)

Non-recursive insertion (ct'd)

Step 3 (Balance if necessary):

- If BF(S) = 0 (S was the root) set BF(S) to the direction of insertion (the tree has become higher)
- If BF(S) = -1 (+1) and we traverse right (left) set BF(S) = 0 (the tree has become more balanced)
- If BF(S) = -1 (+1) and we traverse left (right), the tree becomes unbalanced. Perform a single rotation or a double rotation depending on whether the path is left-left (right-right) or left-right (right-left)

Non-recursive Insertion with BF's

