
AVL Trees

CSE 373
Data Structures

AVL Trees 2

Readings

• Reading Chapter 10
› Section 10.2

AVL Trees 3

Binary Search Tree - Best
Time

• All BST operations are O(d), where d is
tree depth

• minimum d is for a binary tree
with N nodes
› What is the best case tree?
› What is the worst case tree?

• So, best case running time of BST
operations is O(log N)

⎣ ⎦Nlogd 2=

AVL Trees 4

Binary Search Tree - Worst
Time

• Worst case running time is O(N)
› What happens when you Insert elements in

ascending order?
• Insert: 2, 4, 6, 8, 10, 12 into an empty BST

› Problem: Lack of “balance”:
• compare depths of left and right subtree

› Unbalanced degenerate tree

AVL Trees 5

Balanced and unbalanced BST

4

2 5

1 3

1

5

2

4

3

7

6

4

2 6

5 71 3

AVL Trees 6

Approaches to balancing trees
• Don't balance

› May end up with some nodes very deep
• Strict balance

› The tree must always be balanced perfectly
• Pretty good balance

› Only allow a little out of balance
• Adjust on access

› Self-adjusting

AVL Trees 7

Balancing Binary Search
Trees

• Many algorithms exist for keeping
binary search trees balanced
› Adelson-Velskii and Landis (AVL) trees

(height-balanced trees)
› Weight-balanced trees
› Red-black trees;
› Splay trees and other self-adjusting trees
› B-trees and other (e.g. 2-4 trees) multiway

search trees

AVL Trees 8

Perfect Balance
• Want a complete tree after every operation

› tree is full except possibly in the lower right
• This is expensive

› For example, insert 2 in the tree on the left and
then rebuild as a complete tree

Insert 2 &
complete tree

6

4 9

81 5

5

2 8

6 91 4

AVL Trees 9

AVL Trees (1962)

• Named after 2 Russian mathematicians
• Georgii Adelson-Velsky (1922 - ?)
• Evgenii Mikhailovich Landis (1921-1997)

AVL Trees 10

AVL - Good but not Perfect
Balance

• AVL trees are height-balanced binary
search trees

• Balance factor of a node
› height(left subtree) - height(right subtree)

• An AVL tree has balance factor
calculated at every node
› For every node, heights of left and right

subtree can differ by no more than 1
› Store current heights in each node

AVL Trees 11

Height of an AVL Tree

• N(h) = minimum number of nodes in an
AVL tree of height h.

• Basis
› N(0) = 1, N(1) = 2

• Induction
› N(h) = N(h-1) + N(h-2) + 1

• Solution (recall Fibonacci analysis)
› N(h) > φh (φ ≈ 1.62) h-1 h-2

h

AVL Trees 12

Height of an AVL Tree

• N(h) > φh (φ≈ 1.62)
• Suppose we have n nodes in an AVL

tree of height h.
› n > N(h)
› n > φh hence logφ n > h (relatively well

balanced tree!!)
› h < 1.44 log2n (i.e., Find takes O(logn))

AVL Trees 13

Node Heights

1

00

2

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright
empty height = -1

0

0

2

0

6

4 9

1 5

1

Tree A (AVL) Tree B (AVL)

AVL Trees 14

Node Heights after Insert 7

2

10

3

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright
empty height = -1

1

0

2

0

6

4 9

1 5

1

0
7

0
7

balance factor
1-(-1) = 2

-1

Tree A (AVL) Tree B (not AVL)

AVL Trees 15

Insert and Rotation in AVL
Trees

• Insert operation may cause balance factor
to become 2 or –2 for some node
› only nodes on the path from insertion point to

root node have possibly changed in height
› So after the Insert, go back up to the root

node by node, updating heights
› If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation around
the node

AVL Trees 16

Single Rotation in an AVL
Tree

2

10

2

0

6

4 9

81 5

1

0
7

0

1

0

2

0

6

4

9

8

1 5

1

0
7

AVL Trees 17

Double rotation

3

0

3
20

10 30

25

1

40
2

5
0

20

10 35

30

1

405

45

0 1

2

3

Imbalance

45
0

1

Insertion of 34

35

34

0

0

1 25 340

AVL Trees 18

Let the node that needs rebalancing be α.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

The rebalancing is performed through four
separate rotation algorithms.

Insertions in AVL Trees

AVL Trees 19

j

k

X Y
Z

Consider a valid
AVL subtree

AVL Insertion: Outside Case

h

h h

AVL Trees 20

j

k

X
Y

Z

Inserting into X
destroys the AVL
property at node j

AVL Insertion: Outside Case

h

h+1 h

AVL Trees 21

j

k

X
Y

Z

Do a “right rotation”

AVL Insertion: Outside Case

h

h+1 h

AVL Trees 22

j

k

X
Y

Z

Do a “right rotation”

Single right rotation

h

h+1 h

AVL Trees 23

j
k

X Y Z

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!

h

h+1

h

AVL Trees 24

j

k

X Y
Z

AVL Insertion: Inside Case
Consider a valid
AVL subtree

h

hh

AVL Trees 25

Inserting into Y
destroys the
AVL property
at node j

j

k

X
Y

Z

AVL Insertion: Inside Case
Does “right rotation”
restore balance?

h

h+1h

AVL Trees 26

j
k

X

Y
Z

“Right rotation”
does not restore
balance… now k is
out of balance

AVL Insertion: Inside Case

hh+1

h

AVL Trees 27

Consider the structure
of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

AVL Trees 28

j

k

X
V

Z

W

i

Y = node i and
subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1

AVL Trees 29

j

k

X
V

Z

W

i

AVL Insertion: Inside Case
We will do a left-right
“double rotation” . . .

AVL Trees 30

j

k

X V

Z
W

i

Double rotation : first rotation
left rotation complete

AVL Trees 31

j

k

X V

Z
W

i

Double rotation : second
rotation

Now do a right rotation

AVL Trees 32

jk

X V ZW

i

Double rotation : second
rotation

right rotation complete

Balance has been
restored

hh h or h-1

AVL Trees 33

Implementation

balance (1,0,-1)
key

rightleft

You can either keep the height or just the difference in height,
i.e. the balance factor; this has to be modified on the path of
insertion even if you don’t perform rotations

Once you have performed a rotation (single or double) you won’t
need to go back up the tree

AVL Trees 34

Single Rotation

RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}

X

Y Z

n

You also need to
modify the heights
or balance factors
of n and p

Insert

AVL Trees 35

Double Rotation

DoubleRotateFromRight(n : reference node pointer) {
RotateFromLeft(n.right);
RotateFromRight(n);
}

X

n

V W

Z

AVL Trees 36

Insert in AVL trees
Insert(T : tree pointer, x : element) : {
if T = null then
T := new tree; T.data := x; height := 0;

case
T.data = x : return ; //Duplicate do nothing
T.data > x : return Insert(T.left, x);

if ((height(T.left)- height(T.right)) = 2){
if (T.left.data > x) then //outside case

T = RotatefromLeft (T);
else //inside case

T = DoubleRotatefromLeft (T);}
T.data < x : return Insert(T.right, x);

code similar to the left case
Endcase
T.height := max(height(T.left),height(T.right)) +1;
return;

}

AVL Trees 37

AVL Tree Deletion

• Similar but more complex than insertion
› Rotations and double rotations needed to

rebalance
› Imbalance may propagate upward so that

many rotations may be needed.

AVL Trees 38

Arguments for AVL trees:
1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the

speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use

other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run time for

many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees

AVL Trees 39

Non-recursive insertion or the
hacker’s delight

• Key observations;
› At most one rotation
› Balance factor: 2 bits are sufficient (-1 left,

0 equal, +1 right)
› There is one node on the path of insertion,

say S, that is “critical”. It is the node where
a rotation can occur and nodes above it
won’t have their balance factors modified

AVL Trees 40

Non-recursive insertion

• Step 1 (Insert and find S):
› Find the place of insertion and identify the last node S on the

path whose BF ≠ 0 (if all BF on the path = 0, S is the root).
› Insert

• Step 2 (Adjust BF’s)
› Restart from the child of S on the path of insertion. (note: all

the nodes from that node on on the path of insertion have BF = 0.)If
the path traversed was left (right) set BF to –1 (+1) and
repeat until you reach a null link (at the place of insertion)

AVL Trees 41

Non-recursive insertion (ct’d)

• Step 3 (Balance if necessary):
› If BF(S) = 0 (S was the root) set BF(S) to the direction of

insertion (the tree has become higher)
› If BF(S) = -1 (+1) and we traverse right (left) set BF(S) = 0

(the tree has become more balanced)
› If BF(S) = -1 (+1) and we traverse left (right), the tree

becomes unbalanced. Perform a single rotation or a double
rotation depending on whether the path is left-left (right-right)
or left-right (right-left)

AVL Trees 42

Non-recursive Insertion with
BF’s

+1

0

+1
20

10 30

25

-1

40
0 ->1

5
0

20

10 35

30

-1

405

45

0 0

0

+1

45
0

1

Insertion of 34
35

34

00->-1 25 340

Step 1 & 2
S

0

0

Step 3

