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Readings

• Reading Chapter 10
› Section 10.2
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Binary Search Tree - Best 
Time

• All BST operations are O(d), where d is 
tree depth

• minimum d is                   for a binary tree 
with N nodes
› What is the best case tree? 
› What is the worst case tree?

• So, best case running time of BST 
operations is O(log N)

⎣ ⎦Nlogd 2=
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Binary Search Tree - Worst 
Time

• Worst case running time is O(N) 
› What happens when you Insert elements in 

ascending order?
• Insert: 2, 4, 6, 8, 10, 12 into an empty BST

› Problem: Lack of “balance”: 
• compare depths of left and right subtree

› Unbalanced degenerate tree
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Balanced and unbalanced BST
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Approaches to balancing trees
• Don't balance

› May end up with some nodes very deep
• Strict balance

› The tree must always be balanced perfectly
• Pretty good balance

› Only allow a little out of balance
• Adjust on access

› Self-adjusting
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Balancing Binary Search 
Trees

• Many algorithms exist for keeping 
binary search trees balanced
› Adelson-Velskii and Landis (AVL) trees

(height-balanced trees) 
› Weight-balanced trees
› Red-black trees; 
› Splay trees and other self-adjusting trees
› B-trees and other (e.g. 2-4 trees) multiway

search trees
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Perfect Balance
• Want a complete tree after every operation

› tree is full except possibly in the lower right
• This is expensive

› For example, insert 2 in the tree on the left and 
then rebuild as a complete tree

Insert 2 &
complete tree
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AVL Trees (1962)

• Named after 2 Russian mathematicians
• Georgii Adelson-Velsky (1922 - ?)
• Evgenii Mikhailovich Landis (1921-1997)
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AVL - Good but not Perfect 
Balance

• AVL trees are height-balanced binary 
search trees

• Balance factor of a node
› height(left subtree) - height(right subtree)

• An AVL tree has balance factor 
calculated at every node
› For every node, heights of left and right 

subtree can differ by no more than 1
› Store current heights in each node
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Height of an AVL Tree

• N(h) = minimum number of nodes in an 
AVL tree of height h.

• Basis
› N(0) = 1, N(1) = 2

• Induction
› N(h) = N(h-1) + N(h-2) + 1

• Solution (recall Fibonacci analysis)
› N(h) > φh (φ ≈ 1.62) h-1 h-2

h
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Height of an AVL Tree

• N(h) > φh (φ≈ 1.62)
• Suppose we have n nodes in an AVL 

tree of height h.
› n > N(h) 
› n > φh hence logφ n > h  (relatively well 

balanced tree!!)
› h < 1.44 log2n (i.e., Find takes O(logn))
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Node Heights
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Node Heights after Insert 7
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Insert and Rotation in AVL 
Trees

• Insert operation may cause balance factor 
to become 2 or –2 for some node 
› only nodes on the path from insertion point to 

root node have possibly changed in height
› So after the Insert, go back up to the root 

node by node, updating heights
› If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation around 
the node
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Single Rotation in an AVL 
Tree
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Double rotation
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Let the node that needs rebalancing be α.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

The rebalancing is performed through four 
separate rotation algorithms.

Insertions in AVL Trees
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AVL subtree

AVL Insertion: Outside Case
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j
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Inserting into X
destroys the AVL 
property at node j

AVL Insertion: Outside Case
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Do a “right rotation”

AVL Insertion: Outside Case
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Do a “right rotation”

Single right rotation
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j
k

X Y Z

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!
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AVL Insertion: Inside Case
Consider a valid
AVL subtree
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Inserting into Y 
destroys the
AVL property
at node j 
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AVL Insertion: Inside Case
Does “right rotation”
restore balance?
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j
k

X

Y
Z

“Right rotation”
does not restore
balance… now k is
out of balance

AVL Insertion: Inside Case
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Consider the structure
of subtree Y… j
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AVL Insertion: Inside Case
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Y = node i and
subtrees V and W

AVL Insertion: Inside Case
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AVL Insertion: Inside Case
We will do a left-right 
“double rotation” . . .
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Double rotation : first rotation
left rotation complete
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Double rotation : second 
rotation

Now do a right rotation
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jk

X V ZW
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Double rotation : second 
rotation

right rotation complete

Balance has been 
restored

hh h or h-1
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Implementation

balance (1,0,-1)
key

rightleft

You can either keep the height or just the difference in height,
i.e. the balance factor; this has to be modified on the path of 
insertion even if you don’t perform rotations

Once you have performed a rotation (single or double) you won’t 
need to go back up the tree
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Single Rotation

RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}

X

Y Z

n

You also need to 
modify the heights 
or balance factors 
of  n and p

Insert
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Double Rotation

DoubleRotateFromRight(n : reference node pointer) {
RotateFromLeft(n.right);
RotateFromRight(n);
}

X

n

V W

Z



AVL Trees 36

Insert in AVL trees
Insert(T : tree pointer, x : element) : {
if T = null then
T := new tree; T.data := x; height := 0;

case
T.data = x : return ; //Duplicate do nothing
T.data > x : return Insert(T.left, x);

if ((height(T.left)- height(T.right)) = 2){
if (T.left.data > x ) then //outside case

T = RotatefromLeft (T);
else                       //inside case

T = DoubleRotatefromLeft (T);}
T.data < x : return Insert(T.right, x);

code similar to the left case
Endcase
T.height := max(height(T.left),height(T.right)) +1;
return;

}



AVL Trees 37

AVL Tree Deletion

• Similar but more complex than insertion
› Rotations and double rotations needed to 

rebalance
› Imbalance may propagate upward so that 

many rotations may be needed.
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Arguments for AVL trees:
1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the 

speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use

other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run time for 

many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees
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Non-recursive insertion or the 
hacker’s delight

• Key observations;
› At most one rotation
› Balance factor: 2 bits are sufficient (-1 left, 

0 equal, +1 right)
› There is one node on the path of insertion, 

say S, that is “critical”. It is the node where 
a rotation can occur and nodes above it 
won’t have their balance factors modified
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Non-recursive insertion

• Step 1 (Insert and find S):
› Find the place of insertion and identify the last node S on the 

path whose BF ≠ 0 (if all BF on the path = 0, S is the root).
› Insert

• Step 2 (Adjust BF’s)
› Restart from the child of S on the path of insertion. (note: all 

the nodes from that node on on the path of insertion have BF = 0.)If 
the path traversed was left (right) set BF to –1 (+1) and 
repeat until you reach a null link (at the place of insertion)



AVL Trees 41

Non-recursive insertion (ct’d)

• Step 3 (Balance if necessary):
› If BF(S) = 0 (S was the root) set BF(S) to the direction of 

insertion (the tree has become higher)
› If BF(S) = -1 (+1) and we traverse right (left) set BF(S) = 0   

(the tree has become more balanced)
› If BF(S) = -1 (+1) and we traverse left (right), the tree 

becomes unbalanced. Perform a single rotation or a double 
rotation depending on whether the path is left-left (right-right) 
or left-right (right-left)
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Non-recursive Insertion with 
BF’s
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