Binary Heaps

CSE 373
Data Structures
Readings

• Chapter 8
 › Section 8.3
BST implementation of a Priority Queue

• Worst case (degenerate tree)
 › FindMin, DeleteMin and Insert (k) are all $O(n)$

• Best case (completely balanced BST)
 › FindMin, DeleteMin and Insert (k) are all $O(\log n)$

• Balanced BSTs (next topic after heaps)
 › FindMin, DeleteMin and Insert (k) are all $O(\log n)$
Better than a speeding BST

• We can do better than Balanced Binary Search Trees?
 › Very limited requirements: Insert, FindMin, DeleteMin. The goals are:
 › FindMin is $O(1)$
 › Insert is $O(\log N)$
 › DeleteMin is $O(\log N)$
Binary Heaps

• A binary heap is a binary tree (NOT a BST) that is:
 › **Complete**: the tree is completely filled except possibly the bottom level, which is filled from left to right
 › **Satisfies the heap order property**
 • every node is less than or equal to its children
 • or every node is greater than or equal to its children

• **The root node is always the smallest node**
 › or the largest, depending on the heap order
Heap order property

- A heap provides limited ordering information
- Each path is sorted, but the subtrees are not sorted relative to each other
 - A binary heap is NOT a binary search tree

These are all valid binary heaps (minimum)
Binary Heap vs Binary Search Tree

Binary Heap

```
5
/   
10   94
/     /
97    24
```

Parent is less than both left and right children

Binary Search Tree

```
94
/   
10   97
/     /
5     24
```

Parent is greater than left child, less than right child
Structure property

- A binary heap is a complete tree
 - All nodes are in use except for possibly the right end of the bottom row
Examples

- Complete tree, heap order is "max"
- Complete tree, heap order is "min"
- Not complete
- Complete tree, but min heap order is broken
Array Implementation of Heaps

- Root node = A[1]
- Keep track of current size N (number of nodes)

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = 5
FindMin and DeleteMin

• FindMin: Easy!
 › Return root value A[1]
 › Run time = ?

• DeleteMin:
 › Delete (and return) value at root node
DeleteMin

• Delete (and return) value at root node
Maintain the Structure Property

• We now have a “Hole” at the root
 › Need to fill the hole with another value

• When we get done, the tree will have one less node and must still be complete
Maintain the Heap Property

• The last value has lost its node
 › we need to find a new place for it
• We can do a simple insertion sort - like operation to find the correct place for it in the tree
DeleteMin: Percolate Down

- Copy smaller child up and go down one level
- Done if both children are \geq item or reached a leaf node
- What is the run time?
Percolate Down

PercDown(i: integer, x : integer): {
 // N is the number of entries in heap/
 j : integer;
 Case{
 2i > N : A[i] := x; //at bottom/
 2i = N : if A[2i] < x then
 else A[i] := x;
 else j := 2i+1;
 if A[j] < x then
 A[i] := A[j]; PercDown(j,x);
 else A[i] := x;
 }
}
DeleteMin: Run Time Analysis

- Run time is $O(\text{depth of heap})$
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 - $\text{depth} = \lceil \log_2(N) \rceil$
- Run time of DeleteMin is $O(\log N)$
Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done
Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array.
- We need to decide on the correct value for the new node, and adjust the heap accordingly.
Maintain the Heap Property

- The new value goes where?
- We can do a simple insertion sort operation on the path from the new place to the root to find the correct place for it in the tree.
Insert: Percolate Up

- Start at last node and keep comparing with parent $A[i/2]$
- If parent larger, copy parent down and go up one level
- Done if parent \leq item or reached top node $A[1]$
- Run time?
Insert: Done

• Run time?
PercUp

PercUp(i : integer, x : integer): {
 if i = 1 then A[1] := x
 else if A[i/2] < x then
 A[i] := x;
 else
 A[i] := A[i/2];
 Percup(i/2,x);
}
Sentinel Values

- Every iteration of Insert needs to test:
 - if it has reached the top node A[1]
 - if parent ≤ item
- Can avoid first test if A[0] contains a very large negative value
 - sentinel -∞ < item, for all items
- Second test alone always stops at top

<table>
<thead>
<tr>
<th>value</th>
<th>-∞</th>
<th>2</th>
<th>3</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>10</th>
<th>9</th>
<th>11</th>
<th>9</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Binary Heap Analysis

• Space needed for heap of N nodes: $O(\text{MaxN})$
 › An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel

• Time
 › FindMin: $O(1)$
 › DeleteMin and Insert: $O(\log N)$
 › BuildHeap from N inputs: $O(N)$ (forthcoming)