
A little more on Lists

CSE 373 
Data Structures



More on Lists 2

Readings

• Chapter 6 Sections 6.1 – 6.4
› Expandable arrays
› The “position” concept in the node list ADT
› Review of iterators (see CSE 143)
› Collections (read it)



More on Lists 3

Array Lists

• We have seen the main methods 
already

• In addition Java.util.ArrayList
› clear()
› toArray()
› indexOf(e) (1st occurrence)
› lastindexOf(e) (last occurrence)
› See links on the Web for “BasicArrayList”



More on Lists 4

Extendable Arrays

• Weakness of array implementation: 
maxsize

• If array occupancy << maxsize => 
waste of memory

• If array occupancy > maxsize => 
exception (overflow)
› For this latter condition, a solution is to 

expand the array at run-time



More on Lists 5

Expandable Arrays 
implementation

• Insert an element in array A of maxsize N 
when there are already N elements in the 
array
› Allocate an array B of size 2N
› Copy B[i] := A[i], i =0,1,…,N-1
› Let A := B (we use B as the array supporting the 

class)
› Insert the new element in A

• What happens to the old A?



More on Lists 6

Cost of Expandable Arrays

• The copy operation is O(n)
• If we insert and delete anywhere in the 

array, the copy is not more costly than 
an insertion or a deletion

• If we use the array as a stack, insert 
and delete are O(1)

• So is expandable very costly?
› Yes in the worst case sense but no if …



More on Lists 7

Amortized cost (informal 
justification)

• When we expand the array from N to 2N we use 
O(N) extra time

• However, this will allow to do N insertions (for i = N, 
N+1,…, 2N-1) in O(1) time

• If we count the time for the copy and the N operations 
it is O(N) + N.O(1) = O(N)

• So, we do N operations in O(N) time. In an amortized 
way, when looking at the N insertions, the copy 
operation costs us constant time

• For a slightly more formal analysis, see your book pp 
229-230



More on Lists 8

The Node List ADT

• In the same sense that an element in an 
array is defined by its index, an element in a 
list is defined by its position

• Given a list and a position the interface 
should have methods:
› Set or replace an element, getfirst, get last, 

addfirst, removefirst, addafter, removeprevious
etc...

› All of these O(1) is the node list is implemented 
via a doubly linked list



More on Lists 9

Iterators

• Lists are ordered collections so very often 
you want to traverse (walk through) the list

• Iterator extends the concept of position by 
providing means of stepping to the next 
element

• Implementation
› hasNext() tests whether there are elements left 

in the iterator
› next() returns the next element in the iterator



More on Lists 10

Copy singly linked list (version 3 
in java)

List dupList = new LinkedList();
for(Iterator i = list.iterator(); 
i.hasNext(); )
dupList.addlast(i.next());

• Of course need to implement the iterator and 
addlast!

• See web for “BasicLinkedList”


