A little more on Lists

CSE 373
Data Structures



Readings

 Chapter 6 Sections 6.1 — 6.4

> Expandable arrays

> The “position” concept in the node list ADT
> Review of iterators (see CSE 143)

> Collections (read it)

More on Lists



Array LIsts

* \We have seen the main methods
already
e In addition Java.util _ArrayList
>clear()
> toArray()
> Index0f(e) (1stoccurrence)
> lastindexOf(e) (last occurrence)
> See links on the Web for “BasicArrayList”

More on Lists



Extendable Arrays

* \Weakness of array implementation:
maxsize

e |f array occupancy << maxsize =>
waste of memory

e If array occupancy > maxsize =>
exception (overflow)

> For this latter condition, a solution Is to
expand the array at run-time

More on Lists



Expandable Arrays
Implementation

e |Insert an element in array A of maxsize N
when there are already N elements in the
array

Allocate an array B of size 2N
Copy B[i] .= A[i], 1 =0,1,...,N-1

Let A ;= B (we use B as the array supporting the
class)

> Insert the new element in A
 What happens to the old A?

v

A%

A%

More on Lists



Cost of Expandable Arrays

The copy operation is O(n)

If we Insert and delete anywhere in the
array, the copy is not more costly than
an insertion or a deletion

If we use the array as a stack, insert
and delete are O(1)

So Is expandable very costly?
> Yes In the worst case sense butno if ...

More on Lists



Amortized cost (informal
justification)

When we expand the array from N to 2N we use
O(N) extra time

However, this will allow to do N insertions (for i = N,
N+1,..., 2N-1) in O(1) time

If we count the time for the copy and the N operations
itis O(N) + N.O(1) = O(N)

So, we do N operations in O(N) time. In an amortized

way, when looking at the N insertions, the copy
operation costs us constant time

For a slightly more formal analysis, see your book pp
229-230

More on Lists 7



The Node List ADT

* |In the same sense that an element in an
array Is defined by its index, an element in a
list Is defined by its position

« Given a list and a position the interface
should have methods:

> Set or replace an element, getfirst, get last,
addfirst, removefirst, addafter, removeprevious
etc...

> All of these O(1) is the node list is implemented
via a doubly linked list

More on Lists



Iterators

» Lists are ordered collections so very often
you want to traverse (walk through) the list

* |terator extends the concept of position by
providing means of stepping to the next
element

* Implementation
> hasNext () tests whether there are elements left
In the iterator
> next() returns the next element in the iterator

More on Lists



Copy singly linked list (version 3
In java)

List dupList new LinkedList();

for(lterator 1 = list.1terator();
1.hasNext(); )

dupList.addlast(i.next());

« Of course need to implement the iterator and
addlast!

e See web for “BasicLinkedList”

More on Lists

10



