A little more on Lists

CSE 373
Data Structures



Readings

 Chapter 6 Sections 6.1 — 6.4

> Expandable arrays

> The “position” concept in the node list ADT
> Review of iterators (see CSE 143)

> Collections (read it)
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Array LIsts

* \We have seen the main methods
already
e In addition Java.util _ArrayList
>clear()
> toArray()
> Index0f(e) (1stoccurrence)
> lastindexOf(e) (last occurrence)
> See links on the Web for “BasicArrayList”
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Extendable Arrays

* \Weakness of array implementation:
maxsize

e |f array occupancy << maxsize =>
waste of memory

e If array occupancy > maxsize =>
exception (overflow)

> For this latter condition, a solution Is to
expand the array at run-time
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Expandable Arrays
Implementation

e |Insert an element in array A of maxsize N
when there are already N elements in the
array

Allocate an array B of size 2N
Copy B[i] .= A[i], 1 =0,1,...,N-1

Let A ;= B (we use B as the array supporting the
class)

> Insert the new element in A
 What happens to the old A?

v
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A%
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Cost of Expandable Arrays

The copy operation is O(n)

If we Insert and delete anywhere in the
array, the copy is not more costly than
an insertion or a deletion

If we use the array as a stack, insert
and delete are O(1)

So Is expandable very costly?
> Yes In the worst case sense butno if ...
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Amortized cost (informal
justification)

When we expand the array from N to 2N we use
O(N) extra time

However, this will allow to do N insertions (for i = N,
N+1,..., 2N-1) in O(1) time

If we count the time for the copy and the N operations
itis O(N) + N.O(1) = O(N)

So, we do N operations in O(N) time. In an amortized

way, when looking at the N insertions, the copy
operation costs us constant time

For a slightly more formal analysis, see your book pp
229-230
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The Node List ADT

* |In the same sense that an element in an
array Is defined by its index, an element in a
list Is defined by its position

« Given a list and a position the interface
should have methods:

> Set or replace an element, getfirst, get last,
addfirst, removefirst, addafter, removeprevious
etc...

> All of these O(1) is the node list is implemented
via a doubly linked list

More on Lists



Iterators

» Lists are ordered collections so very often
you want to traverse (walk through) the list

* |terator extends the concept of position by
providing means of stepping to the next
element

* Implementation
> hasNext () tests whether there are elements left
In the iterator
> next() returns the next element in the iterator
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Copy singly linked list (version 3
In java)

List dupList new LinkedList();

for(lterator 1 = list.1terator();
1.hasNext(); )

dupList.addlast(i.next());

« Of course need to implement the iterator and
addlast!

e See web for “BasicLinkedList”
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