
Stacks and Queues

CSE 373
Data Structures

Stacks and Queues 2

Readings

• Reading Chapter 5

Stacks and Queues 3

We’’ll cover

• Stack ADT
› Array and linked list implementations

• Queue ADT
› Circular array and linked list

implementations
• Double-Ended Queues

› Deque implementations

Stacks and Queues 4

Stack ADT

• A list for which Insert and
Delete are allowed only at one
end of the list (the top)
› LIFO – Last in, First out

• isEmpty(); size()
• Push: Insert element at top
• Pop: Remove and return top
• Top (aka peek): return top
• “built-in” class in java.util

a tray stack

Stacks and Queues 5

Many important applications of
Stacks for example

• Parsing phase
in compilers

yields the reverse Polish (postfix) notation:
ab+c*d+ (traversal of a binary tree in

postorder; see forthcoming lecture)

(a+b)*c+d

d
+

*

c

a b

parse tree

+

Stacks and Queues 6

A bit of history

• Polish notation (or prefix notation)
introduced by Polish mathematician Jan
Lukasiewicz (1878-1956).

• Reverse polish notation (postfix
notation) should be called “Zciweisakul”

• Question: What data structure would
you use to write a program to go from
“lukasiewicz” to “zciweisakul”?

Stacks and Queues 7

Another Important Application
of Stacks

• Call stack in run time systems
› When a function (method, procedure) is

called the work area (local variables,
copies of parameters, return location in
code) for the new function is pushed on to
the stack. When the function returns the
stack is popped.

› So, calling a recursive procedure with a
depth of N requires O(N) space.

Stacks and Queues 8

Two Basic Implementations of
Stacks

• Array
› The k items in the stack are the first k items

in the array
› Push is InsertLast, Pop is DeleteLast, Top

is access to the last element of the array
• Linked List

› Push is InsertFront, Pop is DeleteFront,
Top is “access” the first element

› IsEmpty is test for null

Stacks and Queues 9

Array Implementation

• Stack of blobs

1 2 3 4 5 6 7 8 9 10 11 12
A

holder = blob pointer array
size = number in stack
maxsize = max size of stack

topbottom

4
12

Stacks and Queues 10

Push and Pop (array impl.)
IsEmpty(A : blobstack pointer) : boolean {
return A.size = 0

}
IsFull(A : blobstack pointer) : boolean {
return A.size = A.maxsize;

}
Pop(A : blobstack pointer) : blob pointer {
// Precondition: A is not empty //
A.size := A.size – 1;
return A.holder[A.size + 1];

}
Push(A : blobstack pointer, p : blob pointer): {
// precondition: A is not full//
A.size := A.size + 1;
A.holder[A.size] := p;

}

Stacks and Queues 11

Linked List Implementation

• Stack of blobs

null

a blobnode

Pointer to
blob

Pointer to
next node

Stacks and Queues 12

Linked Lists vs Array

• Linked list implementation
+ flexible – size of stack can be anything
+ constant time per operation
- Call to memory allocator can be costly

• Array Implementation
+ Memory preallocated
+ constant time per operation.
- Not all allocated memory is used
- Overflow possible - Resizing can be used but

some ops will be more than constant time.

Stacks and Queues 13

ADT Queue

• Insert at one end of List, remove at the
other end

• Queues are “FIFO” – first in, first out
• A queue ensures “fairness”

Stacks and Queues 14

Queue ADT

• Operations:
› Enqueue - add an entry at the end of the

queue (also called “rear” or “tail”)
› Dequeue - remove the entry from the front

(also called “head” of the queue)
› IsEmpty; size
› IsFull may be needed

Stacks and Queues 15

A Sample of Applications of
Queues

• File servers: Users needing access to
their files on a shared file server
machine are given access on a FIFO
basis

• Printer Queue: Jobs submitted to a
printer are printed in order of arrival

• Phone calls made to customer service
hotlines are usually placed in a queue

Stacks and Queues 16

Linked list Implementation

null

front
rear

Q

Header
Not always
there

front rear

Requires a pointer to the front (or head) and a
pointer to the rear (or tail). Why do we choose to
enqueue at the tail and dequeue at the head?

Enqueue hereDequeue
here

Stacks and Queues 17

List Implementation
IsEmpty(Q : blobqueue pointer) : boolean {
return Q.front = Q.rear

}
Dequeue(Q : blobqueue pointer) : blob pointer {
// Precondition: Q is not empty //
B : blob pointer;// the value of the element is a blob
B := Q.front.next;
Q.front.next := Q.front.next.next;
return B;

}
Enqueue(Q : blobqueue pointer, p : blob pointer): {
Q.rear.next := new node;
Q.rear := Q.rear.next;
Q.rear.value := p;

}

Stacks and Queues 18

Array Implementation

• Circular array

0 1 2 3 4 5 6 7 8 9 10 11
Q

holder = blob pointer array
size = number in queue
front = index of front of queue
maxsize = max size of queue

12
2
4

rear = (front + size) mod maxsize

front rear

Stacks and Queues 19

Wrap Around

0 1 2 3 4 5 6 7 8 9 10 11
Q

12
10
4

frontrear

rear = (front + size) mod maxsize
= (10 + 4) mod 12 = 14 mod 12 = 2

Stacks and Queues 20

Enqueue

0 1 2 3 4 5 6 7 8 9 10 11
Q

12
10
4

frontrear

p

Stacks and Queues 21

Enqueue

0 1 2 3 4 5 6 7 8 9 10 11
Q

12
10
5

frontrear

p

Stacks and Queues 22

Enqueue

Enqueue(Q : blobqueue pointer, p : blob pointer) : {
// precondition : queue is not full //
Q.holder[(Q.front + Q.size) mod Q.maxsize] := p;
Q.size := Q.size + 1;
}

Constant time!

Stacks and Queues 23

Dequeue

0 1 2 3 4 5 6 7 8 9 10 11
Q

12
10
4

frontrear

Stacks and Queues 24

Dequeue

0 1 2 3 4 5 6 7 8 9 10 11
Q

12
11
3

frontrear

return

Stacks and Queues 25

Dequeue

Dequeue(Q : blobqueue pointer) : blob pointer {
// precondition : queue is not empty //
p : blob pointer
p := Q.holder[Q.front];
Q.front := (Q.front + 1) mod Q.maxsize;
Q.size := Q.size - 1;
return p;
}

Stacks and Queues 26

Double-ended Queue (aka
deque)

• List ADT that allows insertions and
deletions at both ends

• isempty; size
• Addfirst; addlast; removefirst;

removelast
• So best implementations are:

Stacks and Queues 27

Deque implementations

• Circular array
› Beware of full and empty conditions

• Doubly linked list

