
Lists (a first look)

CSE 373
Data Structures

Lists (a first look) 2

Readings

• Reading
› Chapter 3

› You can start peeking at Chapter 6

Lists (a first look) 3

We will cover

• List ADT (a first look)
• List implementation

› Array
› Linked list
› Doubly linked list

• An example application (long integers)
• Circular list

Lists (a first look) 4

List ADT

• What is a List?
› Ordered sequence of elements A1, A2, …,

AN

• Elements may be of arbitrary type, but
all are of the same type

• Elements have values
• Elements have positions (first, kth, last

etc..)

Lists (a first look) 5

Common operations on lists

• Constructor for an empty list
• Queries: size(); isEmpty();
• Insert and delete

› Must indicate where: first, last, kth, after some
element etc…

• Find, set, replace
› With a given value, find previous etc…

• Will look at a “list interface” in the Java sense
later

Lists (a first look) 6

Simple Examples of List Use

• Polynomials
› 25 + 4x2 + 75x85

› An element is a term whose value must
indicate the power and the coefficient

• Unbounded Integers
› 4576809099383658390187457649494578
› Do not fit within a single computer word
› An element has for value a single digit

Lists (a first look) 7

List Implementations

• Two types of implementation:
› Array-Based
› Linked list (pointer based)

Lists (a first look) 8

List: Array Implementation

• Basic Idea:
› Pre-allocate a big array of size MAX_SIZE
› Keep track of current size using a variable count
› Shift elements when you have to insert or delete

(except of course for insertlast and deletelast)

AN…A4A3A2A1

MAX_SIZE-1count-1…3210

Lists (a first look) 9

List: Array Implementation

FEDCBA
MAX_SIZE-1543210

Insert Z in kth position

EDCZBA
MAX_SIZE-1543210

F

6

Lists (a first look) 10

Array Insert_kth Running Time
• Running time for N elements?
• On average, must move half the elements to

make room – assuming insertions at
positions are equally likely

• This is O(N) running time.
• Worst case is insert at position 0. Must move

all N items one position before the insert. Still
O(N)

Lists (a first look) 11

Linked Implementation

• Basic Idea:
› Allocate little blocks of memory (nodes) as

elements are added to the list
› Keep track of list by linking the nodes together
› Change links (pointers) when you want to insert or

delete

Value
NULL

L node

Value Next

node

Next

Lists (a first look) 12

Linked list: Insert_after

Value

NULL

L

node
Value Next

node

P

Insert the value E after P

Next

Value
E

Next

Lists (a first look) 13

Insertion After

InsertAfter(p : node, e : thing): {
x : node; //declares the type of x
x := new node;
x.value := v;
x.next := p.next;//be sure to do in right order
p.next := x;
}

Lists (a first look) 14

Linked List with Header Node

Value Next

L

first actual list node
Value
ignore

Next

header node

NULL

Advantage: “insert after” and “delete after” can be easily done
at the beginning of the list (insert_first and delete_first)

Lists (a first look) 15

Linked list Implementation
Caveats

• Whenever you break a list, your code
should fix the list up as soon as possible
› Draw pictures of the list to visualize what

needs to be done
• Pay special attention to boundary

conditions:
› Empty list
› Single item – same item is both first and last
› Two items – first, last, but no middle items

Lists (a first look) 16

Linked List Insert Running
Time

• Running time for N elements?
• “Insert_after” takes constant time (O(1))
• Does not depend on input size
• Compare to array based list Insert_kth which

is O(N)
• However, how about Insert_last?

Lists (a first look) 17

Linked List Delete

Value Next

L

node
Value Next

node

PTo delete the node pointed to by P,
need a pointer to the previous node.
Thus we need to traverse the list to find the previous node.
So we might want to use …

NULL

Lists (a first look) 18

Doubly Linked Lists
• In singly linked lists, findPrevious (and hence

Delete) is slow [O(N)] because we cannot go
directly to previous node

• Solution: Keep a "previous" pointer at each
node

head prev prev prev

Lists (a first look) 19

Double Link Pros and Cons

• Advantage
› Delete (not DeleteAfter) and FindPrev are faster

• Disadvantages:
› More space used up (double the number of

pointers at each node)
› More book-keeping for updating the two pointers

at each node (pretty negligible overhead)

Lists (a first look) 20

Unbounded Integers Base 10

• -4572

• 348

-12754null

X : node pointer

sign100101102103

1843null

sign100101102

Y : node pointer

Lists (a first look) 21

Zero

-1

1

null

null

Lists (a first look) 22

Recursive Addition

• Positive numbers (or negative numbers)

3427
+898

7
+8
5
10

342
+89

+1
Recursive calls

Lists (a first look) 23

Recursive Addition

• Mixed numbers

3427
-898

7
-8
9

-10

342
-89

-1
Recursive calls

