
Administrivia- Introduction

CSE 373
Data Structures

CSE 373 Introduction 2

Staff

• Instructor
› Jean-Loup Baer, baer@cs

• TA’s
› Gary Yngve, gyngve@cs
› Jean Wu, jeaneis@cs

CSE 373 Introduction 3

Office Hours

• Jean-Loup Baer – 474 Allen Center
› M 1:30 – 2:30, Th 11:00 – 12:00 or by

appointment
• Gary Yngve – TBD
• Jean Wu – TBD

CSE 373 Introduction 4

Computer Lab

• Math Sciences Computer Center
› http://www.ms.washington.edu/

• Of course you can use your own
computer

• Project must be done in Java
› Use Java 5 (aka Java 1.5)
› See Website for how to download the

software

CSE 373 Introduction 5

Textbook

• Data Structures & Algorithms in Java (4th Ed)
by Michael Goodrich and Roberto Tamassia

• The book is accompanied by an “extensive
website”
http://java.datastructures.net
› Java source code

› Hints to exercises

› Slides, Java applets etc…

CSE 373 Introduction 6

Grading

• Assignments and programming projects
50%

• Midterm 1 15%
› Probably April 21 in class

• Midterm 2 15%
› Probably May 17 in class

• Final 20%
› 2:30-4:20 p.m. Wednesday, June 7, 2006

CSE 373 Introduction 7

E-mail

• If you are registered you are already on
the e-mail list

• Otherwise subscribe by going to the
class web page

• Used for important messages and
announcements by course staff

• You are responsible for anything sent
there

CSE 373 Introduction 8

Discussion Board

• There is a Catalyst e-post message
board

• Used for
› general discussion about the class
› Hints and ideas about assignments (but

see policy on collaboration)
› Topics related to CSE 373

CSE 373 Introduction 9

Assignments

• Electronic turnin due Wednesdays at
11:00 am

• Paper assignments due Wednesdays at
beginning of class

• No late assignment accepted unless
you talked to the instructor first (with an
excellent excuse)

CSE 373 Introduction 10

Policy on collaboration

• Gilligan’s Island rule:
› You may discuss problems with your

classmates to your heart's content.
› After you have solved a problem, discard

all written notes about the solution.
› Go watch TV for a ½ hour (or more).

Preferably Gilligan's Island.
› Then write your solution.

CSE 373 Introduction 11

Class Overview

• Introduction to many of the basic data structures
used in computer software
› Understand the data structures
› Analyze the algorithms that use them
› Know when to apply them

• Practice design and analysis of data structures.
• Practice using these data structures by writing

programs.
• Data structures are the plumbing and wiring of

programs.

CSE 373 Introduction 12

Goal

• You will understand
› what the tools are for storing and

processing common data types
› which tools are appropriate for which need

• So that you will be able to
› make good design choices as a developer,

project manager, or system customer

CSE 373 Introduction 13

Course Topics
• Introduction to Algorithm Analysis
• Lists, Stacks, Queues (very fast!)
• Trees
• Heaps and Priority Queues
• Hashing
• Balanced search trees
• Sorting
• Disjoint Sets
• Graph Algorithms

CSE 373 Introduction 14

Reading

• Chapter 3 Sections 1 and 2
› This is basic review of CSE 142 and CSE

143 material

• Chapter 4
› Mathematical tools we will use
› The Big-Oh notation (super important)

CSE 373 Introduction 15

Data Structures: What?

• Need to organize program data according to
problem being solved

• Abstract Data Type (ADT) - A data object and a
set of operations for manipulating it
› List ADT with operations insert and delete
(among others)

› Stack ADT with operations push and pop
• Note similarity to Java classes

› private data structure and public methods

CSE 373 Introduction 16

Data Structures: Why?

• Program design depends crucially on how
data is structured for use by the program
› Implementation of some operations may become

easier or harder
› Speed of program may dramatically decrease or

increase
› Memory used may increase or decrease
› Debugging may be become easier or harder

CSE 373 Introduction 17

Terminology
• Abstract Data Type (ADT)

› Mathematical description of an object with set of
operations on the object. Useful building block.

• Algorithm
› A high level, language independent, description of

a step-by-step process
• Data structure

› A specific family of algorithms for implementing an
abstract data type.

• Implementation of data structure
› A specific implementation in a specific language

CSE 373 Introduction 18

Algorithm Analysis: Why?

• Correctness:
› Does the algorithm do what is intended.

• Performance:
› What is the running time of the algorithm.
› How much storage does it consume.

• Different algorithms may correctly solve
a given task
› Which should I use?

CSE 373 Introduction 19

Iterative Algorithm for Sum

• Find the sum of the first num integers
stored in an array v.

sum(v[]: integer array, num: integer): integer{
temp_sum: integer ;
temp_sum := 0;
for i = 0 to num – 1 do

temp_sum := v[i] + temp_sum;
return temp_sum;

}
Note the use of pseudocode

CSE 373 Introduction 20

Programming via Recursion

• Write a recursive function to find the
sum of the first num integers stored in
array v.

sum (v[]: integer array, num: integer): integer {
if num = 0 then

return 0
else

return v[num-1] + sum(v,num-1);
}

CSE 373 Introduction 21

Pseudocode

• In the lectures algorithms will be presented in
pseudocode.
› This is very common in the computer science

literature
› Pseudocode is usually easily translated to real

code.
› This is programming language independent

• Pseudocode should also be used for “paper”
homework

CSE 373 Introduction 22

Teaching Philosophy

• Old style Don Knuth

• New Style Java-
base

• This course:
pseudo-code

CSE 373 Introduction 23

Proof by Induction

• Basis Step: The algorithm is correct for
a base case or two by inspection.

• Inductive Hypothesis (n=k): Assume
that the algorithm works correctly for the
first k cases, for any k.

• Inductive Step (n=k+1): Given the
hypothesis above, show that the k+1
case will be calculated correctly.

CSE 373 Introduction 24

Program Correctness by
Induction

• Basis Step: sum(v,0) = 0.
• Inductive Hypothesis (n=k): Assume

sum(v,k) correctly returns sum of first k
elements of v, i.e. v[0]+v[1]+…+v[k-1]

• Inductive Step (n=k+1): sum(v,n)
returns v[k]+sum(v,k) which is the sum
of first k+1 elements of v.

CSE 373 Introduction 25

Algorithms vs Programs

• Proving correctness of an algorithm is very
important
› a well designed algorithm is guaranteed to work

correctly and its performance can be estimated
• Proving correctness of a program (an

implementation) is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap

between mathematical algorithms and programs

