Data Structures and Algorithms
 Useful Mathematical Facts

Notation

$\lfloor x\rfloor$ floor function: the largest integer $\leq x$
$\lceil x\rceil$ ceiling function: the smallest integer $\geq x$

Positional Number System

In base 10, an unsigned integer is $x=\sum_{i=0}^{i=n} a_{i} 10^{i}$, where a_{i} is a digit from 0 to 9.

In base 2 (binary) an unsigned integer is $x=\sum_{i=0}^{i=n} a_{i} 2^{i}$, where a_{i} is a bit value, 0 or 1 .

Logs

$\log _{2} x=y$ means $x=2^{y}$
$\log (x . y)=\log x \cdot \log y ; \quad \log (x / y)=\log x-\log y ; \quad \log \left(x^{y}\right)=y \cdot \log x$
$\log \log x<\log x<x$ for all $x>0$
$\log _{x} a=\frac{\log _{2} a}{\log _{2} x}$

Series

$\mathrm{S}(\mathrm{n})=1+2+3+\ldots+\mathrm{n}=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
$\mathrm{C}(\mathrm{n})=1+2^{2}+3^{2}+\ldots+n^{2}=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
$\mathrm{H}(\mathrm{n})$, the $n^{\text {th }}$ harmonic number $=1+1 / 2+1 / 3+\ldots+1 / n=\ln n+c$ where
$\ln n$ is the natural logarithm of n and c is a constant. Thus $\mathrm{H}(\mathrm{n})=\mathrm{O}(\operatorname{logn})$

The Big-Oh Notation

$T(n)=O(f(n))$ if there are constants c and n_{0} such that $T(n) \leq c . f(n)$ for all $n \geq n_{0}$

Constant time $O(1)$
Logarithmic time $O(\log n)$
Linear time $O(n)$
$O(n \log n)$ grows faster than linear time but not as fast as quadratic time
Quadratic time $O\left(n^{2}\right)$
Cubic time is $O\left(n^{3}\right)$
Polynomial time is $O\left(n^{k}\right)$ for some k
Exponential time is $O\left(c^{n}\right)$ for some $c>1$

