CSE 373 Spring 2006
Data Structures and Algorithms

Midterm

Friday April 21st

NAME :

Do all your work on these pages. Do not add any pages. Use back pages if
necessary. Show your work to get partial credit.

This exam is worth 50 points. After each question, you will find the number
of points it is worth. You should spend approximately x minutes on a question
worth x points.

1. 10 points

2. 15 points

3. 5 points

4. 14 points

5. 6 points

1. (10 points) Big-Oh and analysis of algorithms

(a) (2 points)
Let f(n) and g(n) be two functions. Define formally the meaning that f(n) is O(g(n))

Let f(n) and g(n) be functions mapping nonnegative integers to real numbers.
We say that f(n) is O(g(n) if there is a real constant ¢ and an integer constant
ng > 1 such that:

f(n) <exg(n) for n >ng

(b) (4 points)
Which of the 4 functions below are (is) O(n?)

o f(n) =n?/(6n+1)
e g(n)=n?x(n+1)
e h(n) =n? x logn

° ’L(Tl) — 2210gn

f(n) and i(n)
(¢) (2 points)
Given an array A of n elements, the program (pseudo-code) below returns an

array B such that B(i) = Z;:o A(j)

integer s;

s := 0;

for (i:=0, i<m: i++) {
s := s + A[i];
B[i] := s;

}

What is the time complexity of this program?

O(n)
(d) (2 points)
If A(i) =4,i=0,1,...,n — 1 what is the value of B(i) ?
, o x(i+1
B =Y ="

. 2
7=0

2. (15 points) Memory allocation (This question continues on the next page)

A block of memory of size M is used by a memory allocator. All blocks that are
allocated and deallocated are of the same size, that is unit size. In other words
a maximum of M blocks can be allocated at any given time.

The memory allocator sees the block of memory as an array of M elements,
from element 0 to element M — 1.

(a) (5 points)

The allocations/deallocations are only for 2 stacks, Stack! growing from block 0
up toward block M — 1 and Stack2 growing from block M — 1 down to block 0.
Let Topl (initialized to -1) and T'op2 (initialized to M) be the tops of the stacks.
For example, after 2 calls to AllocStack1(Top1, Top2) that allocates elements in
Stack1 followed by 1 call to AllocStack2(Topl1,Top2) that allocates elements in
Stack2, the memory that was initially all free blocks now has 3 allocated blocks
as per the figure:

Stackl —<— Stack2

E——

Topl = -1 i}
P (i) Initial Top2=M

AN 1] | [T/

Topl=1 Top2 = M-1

(ii) After 2 allocations in Stackl and 1 allocation in Stack2

Give pseudo-code for the 2 methods: AllocStackl(Topl, Top2) and AllocStack2(Top1,Top2)
that return the index (a value between 0 and (M — 1) of the block that was
allocated. Be sure to include a test for overflow.

AllocateStackl(integer Topl, integer Top2): integer {
Topl++;
if (Topl = Top2) then throw overflow exception
else return Topl
}
AllocateStack2(integer Topl, integer Top2) : integer {
Top2--;
if (Topl = Top2) then throw overflow exception
else return Top2

(b) (5 points)

If now Stackl was replaced by a queue with Front and Rear pointers, what
modification would you make to the method to allocate in the stack (i.e., Stack2).
(You don’t have to write the pseudo-code; just state what would change and
how it would change).

I would just change the test for overflow to compare Top2 and Rear.
(c) (3 points)

Could you have a case in part (b) where you cannot allocate for the stack but
there are some free blocks in the memory? If your answer is yes what is the
worst case, i.e., the minimum number of elements in the queue for which this
could happen? Justify your answers in 1 or 2 sentences.

Yes. Consider a few allocations in the queue (without overflow) followed by a
deallocation. If now an allocation in Stack2 results in an overflow, there is a
free block (block at index 0). In fact, the worst case is when the queue has only
1 element.

(d) (2 points)

In order to remedy the problems you found in part (c), a friend of yours says
that you should use a circular queue implementation. Would that help? Justify
your answer in 1 or 2 sentences.

No. The situation above could still occur

3. (5 points) Singly Linked List implementation

You are given a singly linked list with a pointer to its first node, called head, a
pointer to its last node, called tail, and a pointer to a node in between called p.
You can assume that the list has at least 3 nodes.

(a) (3 points)

Give pseudo-code to transform the above list into a list which is the concatena-
tion of the list starting at p (included) and terminating at tail (included) with
the list starting at head (included) and terminating at p (not included). The
method can destruct the original list. Only a pointer to the first node of the
new list is required.

Splitandconcatenate(p,head,tail: pointer): pointer{
curr : pointer;

tail.next := head;
curr := head;
while curr.next != p {
curr := curr.next;
}
curr.next := null
return p

(b) (1 point)

What is the time complexity of your pseudo-code above if you know that the
list has n elements and that p is the node directly following the head node.

0(1)
(¢) (1 point)

What is the time complexity of your pseudo-code above if you know that the
list has n elements and that p is the node directly preceding the tail node.

O(n)

4. (14 points) Binary Search Trees (This question continues on the next page)

(a) (2 points)

Which of the following 4 trees are Binary Search Trees (BSTSs)

o & %

(b) © (d) @

@

(c) and (d)
(b) (3 points)

Draw the BST where the following keys are inserted in the order:
10, 6, 14, 17, 15, 8, 2, 7

(c) (3 points)

Given the BST of part (b) draw the BST after the deletion of key 10 followed
by the deletion of key 6

(d) (3 points)

Recall that a traversal in:

preorder means traverse root, traverse left subtree, traverse right subtree
postorder means traverse left subtree, traverse right subtree, traverse root
inorder means traverse left subtree, traverse root, traverse right subtree

Given the postorder of a BST: 35, 30, 40, 55, 75, 60, 50
draw the tree

@@@
w @ ®
(3

(e) (3 points)
Give the pseudo-code for a method Findmax() that returns the maximum ele-
ment in a BST.

Findmax(T: tree pointer) : integer {
if T = null then throw exception empty tree;
while (T.right != null) {

T := T.right;

3

return T.data;

5. (6 points)

Fill up the table below with the time complexity in Big-Oh notation for the
average cases and worst cases of 3 sorting algorithms

Sorting Algorithm | Average Case | Worst Case
Insertion Sort O(n?) O(n?)
Selection Sort O(n?) O(n?)

MergeSort O(nlogn) O(nlogn)

