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Directed Graphs (Part II)

CSE 373 
Data Structures
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Dijkstra’s Shortest Path 
Algorithm

• Initialize the cost of s to 0, and all the rest of the 
nodes to ∞

• Initialize set S to be ∅
› S is the set of nodes to which we have a shortest path

• While S is not all vertices
› Select the node A with the lowest cost that is not in S 

and identify the node as now being in S
› for each node B adjacent to A

• if cost(A)+cost(A,B) < B’s currently known cost
– set cost(B) = cost(A)+cost(A,B)
– set  previous(B) = A so that we can remember the path
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Example: Initialization

v1
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0 ∞

∞ ∞

∞

Pick vertex not in S with lowest cost.

∞ ∞

Cost(source) = 0 Cost(all vertices 
but source) = ∞
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Example: Update Cost 
neighbors
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v2

v5v3 v4
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∞ ∞
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∞ ∞

Cost(v2) = 2
Cost(v4) = 1
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Example: pick vertex with 
lowest cost and add it to S

Pick vertex not in S with lowest cost, i.e., v4
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Example: update neighbors
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9 5

Cost(v3) = 1 + 2 = 3 
Cost(v5) = 1 + 2 = 3 
Cost(v6) = 1 + 8 = 9 
Cost(v7) = 1 + 4 = 5
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Example (Ct’d)
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Pick vertex not in S with lowest cost (v2) and update neighbors

9 5

Note : cost(v4) not 
updated since already 
in S and cost(v5) not 
updated since it is 
larger than previously 
computed
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Example: (ct’d)
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Pick vertex not in S (v5) with lowest cost and update neighbors

9 5
No updating
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Example: (ct’d)
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Pick vertex not in S with lowest cost (v3) and update neighbors

8 5
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Example: (ct’d)
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Pick vertex not in S with lowest cost (v7) and update neighbors

Cost(v6) = min (8, 5+1) = 6

Previous cost
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Example (end)
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Pick vertex not in S with lowest cost (v6) and update neighbors

6 5
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Data Structures

• Adjacency Lists

1
2
3
4
5
6
7

2 2

G
0
∞
∞
∞
∞
∞
∞

C
4 1

v1

v7v6
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v5v3 v4
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4 3 510
1 4 6 5
3 2 5 2
7 6

6 1

6 8

7 4

next
cost

adj

Priority queue for finding and deleting lowest cost vertex
and for decreasing costs (Binary Heap works)

P Q

previous cost priority queue pointers
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Time Complexity

• n vertices and m edges
• Initialize data structures O(n+m)
• Find min cost vertices O(n log n)

› n delete mins
• Update costs O(m log n)

› Potentially m updates
• Update previous pointers O(m)

› Potentially m updates
• Total time O((n + m) log n) - very fast.
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Correctness

• Dijkstra’s algorithm is an example of a greedy 
algorithm

• Greedy algorithms always make choices that 
currently seem the best
› Short-sighted – no consideration of long-term or global 

issues
› Locally optimal does not always mean globally optimal

• In Dijkstra’s case – choose the least cost node, 
but what if there is another path through other 
vertices that is cheaper?
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THE KNOWN
CLOUD

G Next shortest path from 
inside the known cloud

P

“Cloudy” Proof: The Idea

• If the path to G is the next shortest path, the path to P must be 
at least as long. Therefore, any path through P to G cannot be 
shorter!

Source

Least cost node

competitor
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Inside the Cloud (Proof)

• Everything inside the cloud has the correct 
shortest path

• Proof is by induction on the number of nodes 
in the cloud:
› Base case: Initial cloud is just the source s with 

shortest path 0.
› Inductive hypothesis: Assume that a cloud of k-1 

nodes all have shortest paths.
› Inductive step: choose the least cost node G à

has to be the shortest path to G (previous slide). 
Add k-th node G to the cloud.
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All Pairs Shortest Path

• Given a edge weighted directed graph G = 
(V,E) find for all u,v in V the length of the 
shortest path from u to v.  Use matrix 
representation.

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

1  2  3  4  5  6  7
1  0  2  :  1  :  :  :
2  :  0  :  3 10  :  :
3  4  :  0  :  :  5  :
4  :  :  2  0  2  8  4
5  :  :  :  :  0  :  6 
6  :  :  :  :  :  0  : 
7  :  :  :  :  :  1  0

C

: = infinity 5/11/2004 CSE 373 SP 04 - Digraphs 2 18

A (simpler) Related Problem: 
Transitive Closure

• Given a digraph G(V,E) the transitive 
closure is a digraph G’(V’,E’) such that
› V’ = V (same set of vertices)

› If (vi, vi+1,…,vk) is a path in G, then (vi, vk)  
is an edge of E’
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Unweighted Digraph Boolean 
Matrix Representation

• C is called the connectivity matrix

1  2  3  4  5  6  7
1  0  1  0  1  0  0  0
2  0  0  0  1  1  0  0
3  1  0  0  0  0  1  0
4  0  0  1  0  1  1  1
5  0  0  0  0  0  0  1 
6  0  0  0  0  0  0  0 
7  0  0  0  0  0  1  0

C
1 2

3 4 5

6 7

1 = connected
0 = not connected
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Transitive Closure

1  2  3  4  5  6  7
1  1  1 1  1 1  1  1
2  1  1  1 1  1  1  1
3  1  1  1  1  1 1  1
4  1  1 1  1 1  1  1
5  0  0  0  0  0  1 1 
6  0  0  0  0  0  0  0 
7  0  0  0  0  0  1  0

C
1 2

3 4 5

6 7
On the graph, we show only the edges

added with 1 as origin. The matrix represents

the full transitive closure.
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Finding Paths of Length 2

// First initialize C2 to all zero //
Length2 {
for k = 1 to n
for i = 1 to n do
for j = 1 to n do

C2[i,j] := C2[i,j] ∪ (C[i,k] ∩ C[k,j]);
}
where ∩ is Boolean And (&&) and ∪ is Boolean OR (||)
This means if there is an edge from i to k
AND an edge from k to j, then there is a path
of length 2 between i and j. 
Column k (C[i,k]) represents the predecessors of k
Row k (C[k,j]) represents the successors of k

i k j
path of length 2
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Paths of Length 2
1  2  3  4  5  6  7

1  0  1  0  1  0  0  0
2  0  0  0  1  1  0  0
3  1  0  0  0  0  1  0
4  0  0  1  0  1  1  1
5  0  0  0  0  0  0  1 
6  0  0  0  0  0  0  0 
7  0  0  0  0  0  1  0

C

1 2

3 4 5

6 7

1  2  3  4  5  6  7
1  0  0  1  1  1  1  1
2  0  0  1  0  1  1  1
3  0  1  0  1  0  0  0
4  1  0  0  0  0  1  1
5  0  0  0  0  0  1  0
6  0  0  0  0  0  0  0 
7  0  0  0  0  0  0  0

C2

Time O(n 3)
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Transitive Closure

• Union of paths of length 0, length 1, 
length 2, …, length n-1.
› Time complexity n * O(n3) =  O(n4) 

• There exists a better (O(n3) ) algorithm: 
Warshall’s algorithm
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Warshall Algorithm

TransitiveClosure {
for k = 1 to n do  // k is the step number //

for i = 1 to n do
for j = 1 to n do

C [i,j] := C[i,j] ∪ (C[i,k] ∩ C[k,j]);
}

where C[i,j] starts as the original
connectivity matrix and C[i,j] is updated
after step k if a new path from i to j 
through k is found.

i k j

or and
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Proof of Correctness

Prove: After the k-th time through the 
loop, C[i,j] =1 if there is a path from i to j 
that only passes through vertices 
numbered 1,2,…,k  (except for the initial 
edges)

• Base case: k = 1.  C [i,j] = 1 for the initial 
connectivity matrix (path of length 0) 
and C [i,j] = 1 if there is a path (i,1,j)
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Cloud Argument

Vertices numbered
1,2,…,k-1

k

i j

Ck-1(i,k) Ck-1(k,j)

Ck(i,j)
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Inductive Step

• Inductive Hypothesis: Suppose after step k-1 
that C[i,j] contains a 1 if there is a path from i 
to j through vertices 1,…,k-1.

• Induction: Consider step k, which does
C[i,j] := C[i,j] ∪ (C[i,k] ∩ C[k,j]);

Either C[i,j] is already 1 or there is a new path 
through vertex k, which makes it 1. 

or and
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Back to Weighted graphs: 
Matrix Representation

• C[i,j] = the cost of the edge (i,j)
› C[i,i] = 0 because no cost to stay where you are
› C[i,j] = infinity (:) if no edge from i to j.

1  2  3  4  5  6  7
1  0  2  :  1  :  :  :
2  :  0  :  3 10  :  :
3  4  :  0  :  :  5  :
4  :  :  2  0  2  8  4
5  :  :  :  :  0  :  6 
6  :  :  :  :  :  0  : 
7  :  :  :  :  :  1  0

C
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Floyd – Warshall Algorithm

All_Pairs_Shortest_Path {
for k = 1 to n do
for i = 1 to n do
for j = 1 to n do
C[i,j] := min(C[i,j], C[i,k] + C[k,j]);

}

Note x + : = : by definition (: is infinity)

On termination C[i,j] is the length of the shortest path from i to j.

// Start with the cost matrix C

old cost updated new cost
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The Computation
1  2  3  4  5  6  7

1  0  2  :  1  :  :  :
2  :  0  :  3 10  :  :
3  4  :  0  :  :  5  :
4  :  :  2  0  2  8  4
5  :  :  :  :  0  :  6 
6  :  :  :  :  :  0  : 
7  :  :  :  :  :  1  0

C 1  2  3  4  5  6  7
1  0  2  3  1  3  6  5
2  9  0  5  3  5  8  7
3  4  6  0  5  4  5  6
4  6  8  2  0  2  5  4
5  :  :  :  :  0  7  6 
6  :  :  :  :  :  0  : 
7  :  :  :  :  :  1  0

C

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1
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Time Complexity of All Pairs 
Shortest Path

• n is the number of vertices
• Three nested loops. O(n3)

› Shortest paths can be found too (see the book).

• Repeated Dijkstra’s algorithm 
› O(n(n +m)log n) (= O(n3 log n) for dense graphs).
› Run Dijkstra starting at each vertex.
› But, Dijkstra also gives the shortest paths not just 

their lengths.


