Directed Graphs (Part II)

CSE 373
Data Structures

Dijkstra’s Shortest Path
Algorithm

« Initialize the cost of s to 0, and all the rest of the
nodes to ¥
« |nitialize set S to be /£
> Sis the set of nodes to which we have a shortest path
* While S is not all vertices

> Select the node A with the lowest cost that is notin S
and identify the node as now being in S

> for each node B adjacent to A
« if cost(A)+cost(A,B) < B's currently known cost
— set cost(B) = cost(A)+cost(A,B)
— set previous(B) = A so that we can remember the path
5/11/2004 CSE 373 SP 04 - Digraphs 2 2

Example: Initialization

0 .
Cost(source) =0 ™ Cost(all vertices

but source) = ¥

Pick vertex not in S with lowest cost.

5/11/2004 CSE 373 SP 04 - Digraphs 2 3

Example: Update Cost

— neighbers——

Cost(v,) = 2
Cost(v,) = 1
¥ ¥
5/11/2004 CSE 373 SP 04 - Digraphs 2 4

Example: pick vertex with

Pick vertex not in S with lowest cost, i.e., v,

5/11/2004 CSE 373 SP 04 - Digraphs 2 5

Example: update neighbors

Cost(vs) =1+2=3
Cost(vs) =1+2=3

Cost(v)=1+8=9 © 2
Cost(v;)=1+4=5
5/11/2004 CSE 373 SP 04 - Digraphs 2 6

Example (Ct'd)

Pick vertex not in S with lowest cost (v,) and update neighbors
0

Note : cost(v,) not
updated since already
in S and cost(vs) not

2 3 updated since it is
larger than previously
computed

5/11/2004 CSE 373 SP 04 - Digraphs 2

Example: (ct'd)

Pick vertex not in S (v;) with lowest cost and update neighbors
0

g SPEEL) o
Ny

9

No updating

5/11/2004 CSE 373 SP 04 - Digraphs 2 8

Example: (ct'd)

Pick vertex not in S with lowest cost (v;) and update neighbors

5/11/2004 CSE 373 SP 04 - Digraphs 2 9

Example: (ct'd)

Pick vertex not in S with lowest cost (v;) and update neighbors

Previous cost,
L4

Cost(Ve) =min (8, 5+1) =6

5/11/2004 CSE 373 SP 04 - Digraphs 2 10

Example (end)

Pick vertex not in S with lowest cost (vs) and update neighbors

5/11/2004 CSE 373 SP 04 - Digraphs 2 11

Data Structures

« Adjacency Lists S
previous cost pfiority gr€ue pointers adj
Al

7]
=

A e
~NoahAwWNRE

¥

Priority queue for finding and deleting lowest cost vertex
and for decreasing costs (Binary Heap works)
5/11/2004 CSE 373 SP 04 - Digraphs 2 12

Time Complexity

e n vertices and m edges
« Initialize data structures O(n+m)
¢ Find min cost vertices O(n log n)
> n delete mins
¢ Update costs O(m log n)
> Potentially m updates
» Update previous pointers O(m)
> Potentially m updates
e Total time O((n + m) log n) - very fast.

5/11/2004 CSE 373 SP 04 - Digraphs 2 13

Correctness

« Dijkstra’s algorithm is an example of a greedy
algorithm
Greedy algorithms always make choices that
currently seem the best

> Short-sighted — no consideration of long-term or global

Issues

> Locally optimal does not always mean globally optimal
In Dijkstra’s case — choose the least cost node,
but what if there is another path through other
vertices that is cheaper?

5/11/2004 CSE 373 SP 04 - Digraphs 2 14

“Cloudy” Proof: The Idea

Next shortest path from
inside the known cloud

THE KNOWN
cLouD @

competitor Q

Source

« Ifthe path to G is the next shortest path, the path to P must be
at least as long. Therefore, any path through P to G cannot be
shorter!

5/11/2004 CSE 373 SP 04 - Digraphs 2 15

Inside the Cloud (Proof)

« Everything inside the cloud has the correct
shortest path
¢ Proof is by induction on the number of nodes
in the cloud:
> Base case: Initial cloud is just the sources with
shortest path 0.
> Inductive hypothesis: Assume that a cloud of k-1
nodes all have shortest paths.
> Inductive step: choose the least cost node G >

has to be the shortest path to G (previous slide).
Add k-th node G to the cloud.

5/11/2004 CSE 373 SP 04 - Digraphs 2 16

All Pairs Shortest Path

Given a edge weighted directed graph G =
(V,E) find for all u,v in V the length of the
shortest path from u to v. Use matrix
representation.
1 2 3 45 6 7
o2 : 1 : @ :
0 : 310
0 @ 5
2 2 8 4
0 : 6
0
1

4 :
: 0

N UAWNRE O

5/11/2004 © =infinity cse 373 sp 04 - Digraphs2 17

A (simpler) Related Problem:
» I

 Given a digraph G(V,E) the transitive
closure is a digraph G’(V',E’) such that
> V' =V (same set of vertices)
> If (V}, Vigq, ..., V) is @ path in G, then (v;, v,)
is an edge of E’

5/11/2004 CSE 373 SP 04 - Digraphs 2 18

Unweighted Digraph Boolean
: :

e Cis called the connectivity matrix
1

connected
not connected

N UAWNRE O
coocococorN
coorooOOwW
coococorkE A
coororow
roOORrRROOO®
corroOCO~N

1
0
0
1
0
0
0
0

5/11/2004 CSE 373 SP 04 - Digraphs 2 19

Transitive Closure

Finding Paths of Length 2

/1l First initialize C to all zero //

Lengt h2 {
for k=1 ton path oflength 2
for i =1ton do 'CP

for j =1 to n do R
) Ci,j] = Qfi,j] E (i, k] ¢ dk,j]);

where C is Boolean And (&) and E is Boolean OR (||)
This nmeans if there is an edge fromi to k

AND an edge fromk to j, then there is a path

of length 2 between i and j.

Colum k (di,k]) represents the predecessors of k
Row k (dk,j]) represents the successors of k

5/11/2004 CSE 373 SP 04 - Digraphs 2 21

C1 2 3 456 7
1 11 1 1 1 1
2 11 11 1 1
3 111 11 1
4 1111 11 6)
5 0000 1 1 On the graph, we show only the edges
6 0 0 0 O0 OO ded with 1 as origin. The matrix represents
7 0 0 0 0 10 -
the full transitive closure.
5/11/2004 CSE 373 SP 04 - Digraphs 2 20
Paths of Length 2
c 2 3456 7
1 101 0 0O Time O(n?3)
2 0 01100
3 0 0 0010
4 0101 1 1
5 0 0 0 O0O0 1
6 0 0 0 O0 OO
7 0 0 0 0 10
c2 2 34567
1 011111
2 01 01 11
3 101 0 0 O
4 L 000 011
5 00 0 O0 10
6 0 0 0 0 O0O0
51180040 0 0 0 0 c& 38 sp o4 - pigraphs2 22

Transitive Closure

« Union of paths of length 0, length 1,
length 2, ..., length n-1.
> Time complexity n * O(n3) = O(n4)
» There exists a better (O(r?)) algorithm:
Warshall's algorithm

5/11/2004 CSE 373 SP 04 - Digraphs 2 23

Warshall Algorithm
o—0—o0

i . K .

Transitived osure {
for k =1tondo // kis the step nunber //
for i =1ton do
for j =1 to n do R
Cli.jl :=di,j] E (di.k C dkjl);
} or and

where (i,j] starts as the original
connectivity matrix and (i,j] is updated
after step k if a newpath fromi to j
through k is found.

5/11/2004 CSE 373 SP 04 - Digraphs 2 24

Proof of Correctness

Prove: After the k-th time through the
loop, CIi,j] =1 if there is a path from i to j
that only passes through vertices
numbered 1,2,...,k (except for the initial
edges)

e Base case: k=1. CJi,j] = 1 for the initial
connectivity matrix (path of length 0)
and C [i,j] = 1 if there is a path (i,1,))

5/11/2004 CSE 373 SP 04 - Digraphs 2 25

Cloud Argument

5/11/2004 CSE 373 SP 04 - Digraphs 2 26

Inductive Step

 Inductive Hypothesis: Suppose after step k-1
that C[i,j] contains a 1 if there is a path from i
to j through vertices 1,...k-1.

 Induction: Consider step k, which does
qi.jl = di.jl g (dik g dkil);

Either CJi,j] is already 1 or there is a new path
through vertex k, which makes it 1.

5/11/2004 CSE 373 SP 04 - Digraphs 2 27

Back to Weighted graphs:
) :

¢ CJ[i,j] = the cost of the edge (i,j)
> CIi,i] = 0 because no cost to stay where you are
> CIi,j] = infinity () if no edge fromii to j.

C 2 3456 7
1 2 1
2 0 : 310 :
3 0 5
4 2 0 2 8
5 0 0 : 6
6 0
7 10
5/11/2004 CSE 373 SP 04 - Digraphs 2 28

Floyd — Warshall Algorithm

/I Start with the cost matrix C

Al _Pairs_Shortest_Path {
for k =1to n do

for i =1ton do
for j =1tondo))
di.j] :=mn(qi,jl, di. k] + dkjl);
} old cost updated new cost
Note x + : = : by definition (: is infinity)

On termination Cfi,j] is the length of the shortest path from i to j.

5/11/2004 CSE 373 SP 04 - Digraphs 2 29

The Computation

C 3 45 6 7 C 2 3 45 6 7
1 o1 Do 1 2 31 3 6 5
2 : 310 : = 2 0 5 3 5 8 7
3 0 : : 5 : 3 6 0 5 4 5 6
4 2 0 2 8 4 4 8 2 0 2 5 4
5 | 0 0 : 6 5 : : : 07 6
6 N 6 0

7 10 7 10

5/11/2004 CSE 373 SP 04 - Digraphs 2 30

Time Complexity of All Pairs
Shaortest Path

* nis the number of vertices
* Three nested loops. O(n3)
> Shortest paths can be found too (see the book).
* Repeated Dijkstra’s algorithm
> O(n(n +m)log n) (= O(n3log n) for dense graphs).
> Run Dijkstra starting at each vertex.

> But, Dijkstra also gives the shortest paths not just
their lengths.

5/11/2004 CSE 373 SP 04 - Digraphs 2 31

