
1

Directed Graphs (Part II)

CSE 373
Data Structures

5/11/2004 CSE 373 SP 04 - Digraphs 2 2

Dijkstra’s Shortest Path
Algorithm

• Initialize the cost of s to 0, and all the rest of the
nodes to ∞

• Initialize set S to be ∅
› S is the set of nodes to which we have a shortest path

• While S is not all vertices
› Select the node A with the lowest cost that is not in S

and identify the node as now being in S
› for each node B adjacent to A

• if cost(A)+cost(A,B) < B’s currently known cost
– set cost(B) = cost(A)+cost(A,B)
– set previous(B) = A so that we can remember the path

5/11/2004 CSE 373 SP 04 - Digraphs 2 3

Example: Initialization

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 ∞

∞ ∞

∞

Pick vertex not in S with lowest cost.

∞ ∞

Cost(source) = 0 Cost(all vertices
but source) = ∞

5/11/2004 CSE 373 SP 04 - Digraphs 2 4

Example: Update Cost
neighbors

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

Cost(v2) = 2
Cost(v4) = 1

5/11/2004 CSE 373 SP 04 - Digraphs 2 5

Example: pick vertex with
lowest cost and add it to S

Pick vertex not in S with lowest cost, i.e., v4

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

5/11/2004 CSE 373 SP 04 - Digraphs 2 6

Example: update neighbors

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

Cost(v3) = 1 + 2 = 3
Cost(v5) = 1 + 2 = 3
Cost(v6) = 1 + 8 = 9
Cost(v7) = 1 + 4 = 5

2

5/11/2004 CSE 373 SP 04 - Digraphs 2 7

Example (Ct’d)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (v2) and update neighbors

9 5

Note : cost(v4) not
updated since already
in S and cost(v5) not
updated since it is
larger than previously
computed

5/11/2004 CSE 373 SP 04 - Digraphs 2 8

Example: (ct’d)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S (v5) with lowest cost and update neighbors

9 5
No updating

5/11/2004 CSE 373 SP 04 - Digraphs 2 9

Example: (ct’d)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (v3) and update neighbors

8 5

5/11/2004 CSE 373 SP 04 - Digraphs 2 10

Example: (ct’d)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

6 5

Pick vertex not in S with lowest cost (v7) and update neighbors

Cost(v6) = min (8, 5+1) = 6

Previous cost

5/11/2004 CSE 373 SP 04 - Digraphs 2 11

Example (end)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (v6) and update neighbors

6 5

5/11/2004 CSE 373 SP 04 - Digraphs 2 12

Data Structures

• Adjacency Lists

1
2
3
4
5
6
7

2 2

G
0
∞
∞
∞
∞
∞
∞

C
4 1

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

4 3 510
1 4 6 5
3 2 5 2
7 6

6 1

6 8

7 4

next
cost

adj

Priority queue for finding and deleting lowest cost vertex
and for decreasing costs (Binary Heap works)

P Q

previous cost priority queue pointers

3

5/11/2004 CSE 373 SP 04 - Digraphs 2 13

Time Complexity

• n vertices and m edges
• Initialize data structures O(n+m)
• Find min cost vertices O(n log n)

› n delete mins
• Update costs O(m log n)

› Potentially m updates
• Update previous pointers O(m)

› Potentially m updates
• Total time O((n + m) log n) - very fast.

5/11/2004 CSE 373 SP 04 - Digraphs 2 14

Correctness

• Dijkstra’s algorithm is an example of a greedy
algorithm

• Greedy algorithms always make choices that
currently seem the best
› Short-sighted – no consideration of long-term or global

issues
› Locally optimal does not always mean globally optimal

• In Dijkstra’s case – choose the least cost node,
but what if there is another path through other
vertices that is cheaper?

5/11/2004 CSE 373 SP 04 - Digraphs 2 15

THE KNOWN
CLOUD

G Next shortest path from
inside the known cloud

P

“Cloudy” Proof: The Idea

• If the path to G is the next shortest path, the path to P must be
at least as long. Therefore, any path through P to G cannot be
shorter!

Source

Least cost node

competitor

5/11/2004 CSE 373 SP 04 - Digraphs 2 16

Inside the Cloud (Proof)

• Everything inside the cloud has the correct
shortest path

• Proof is by induction on the number of nodes
in the cloud:
› Base case: Initial cloud is just the source s with

shortest path 0.
› Inductive hypothesis: Assume that a cloud of k-1

nodes all have shortest paths.
› Inductive step: choose the least cost node G à

has to be the shortest path to G (previous slide).
Add k-th node G to the cloud.

5/11/2004 CSE 373 SP 04 - Digraphs 2 17

All Pairs Shortest Path

• Given a edge weighted directed graph G =
(V,E) find for all u,v in V the length of the
shortest path from u to v. Use matrix
representation.

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

1 2 3 4 5 6 7
1 0 2 : 1 : : :
2 : 0 : 3 10 : :
3 4 : 0 : : 5 :
4 : : 2 0 2 8 4
5 : : : : 0 : 6
6 : : : : : 0 :
7 : : : : : 1 0

C

: = infinity 5/11/2004 CSE 373 SP 04 - Digraphs 2 18

A (simpler) Related Problem:
Transitive Closure

• Given a digraph G(V,E) the transitive
closure is a digraph G’(V’,E’) such that
› V’ = V (same set of vertices)

› If (vi, vi+1,…,vk) is a path in G, then (vi, vk)
is an edge of E’

4

5/11/2004 CSE 373 SP 04 - Digraphs 2 19

Unweighted Digraph Boolean
Matrix Representation

• C is called the connectivity matrix

1 2 3 4 5 6 7
1 0 1 0 1 0 0 0
2 0 0 0 1 1 0 0
3 1 0 0 0 0 1 0
4 0 0 1 0 1 1 1
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0

C
1 2

3 4 5

6 7

1 = connected
0 = not connected

5/11/2004 CSE 373 SP 04 - Digraphs 2 20

Transitive Closure

1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1
5 0 0 0 0 0 1 1
6 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0

C
1 2

3 4 5

6 7
On the graph, we show only the edges

added with 1 as origin. The matrix represents

the full transitive closure.

5/11/2004 CSE 373 SP 04 - Digraphs 2 21

Finding Paths of Length 2

// First initialize C2 to all zero //
Length2 {
for k = 1 to n
for i = 1 to n do
for j = 1 to n do

C2[i,j] := C2[i,j] ∪ (C[i,k] ∩ C[k,j]);
}
where ∩ is Boolean And (&&) and ∪ is Boolean OR (||)
This means if there is an edge from i to k
AND an edge from k to j, then there is a path
of length 2 between i and j.
Column k (C[i,k]) represents the predecessors of k
Row k (C[k,j]) represents the successors of k

i k j
path of length 2

5/11/2004 CSE 373 SP 04 - Digraphs 2 22

Paths of Length 2
1 2 3 4 5 6 7

1 0 1 0 1 0 0 0
2 0 0 0 1 1 0 0
3 1 0 0 0 0 1 0
4 0 0 1 0 1 1 1
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0

C

1 2

3 4 5

6 7

1 2 3 4 5 6 7
1 0 0 1 1 1 1 1
2 0 0 1 0 1 1 1
3 0 1 0 1 0 0 0
4 1 0 0 0 0 1 1
5 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0

C2

Time O(n 3)

5/11/2004 CSE 373 SP 04 - Digraphs 2 23

Transitive Closure

• Union of paths of length 0, length 1,
length 2, …, length n-1.
› Time complexity n * O(n3) = O(n4)

• There exists a better (O(n3)) algorithm:
Warshall’s algorithm

5/11/2004 CSE 373 SP 04 - Digraphs 2 24

Warshall Algorithm

TransitiveClosure {
for k = 1 to n do // k is the step number //

for i = 1 to n do
for j = 1 to n do

C [i,j] := C[i,j] ∪ (C[i,k] ∩ C[k,j]);
}

where C[i,j] starts as the original
connectivity matrix and C[i,j] is updated
after step k if a new path from i to j
through k is found.

i k j

or and

5

5/11/2004 CSE 373 SP 04 - Digraphs 2 25

Proof of Correctness

Prove: After the k-th time through the
loop, C[i,j] =1 if there is a path from i to j
that only passes through vertices
numbered 1,2,…,k (except for the initial
edges)

• Base case: k = 1. C [i,j] = 1 for the initial
connectivity matrix (path of length 0)
and C [i,j] = 1 if there is a path (i,1,j)

5/11/2004 CSE 373 SP 04 - Digraphs 2 26

Cloud Argument

Vertices numbered
1,2,…,k-1

k

i j

Ck-1(i,k) Ck-1(k,j)

Ck(i,j)

5/11/2004 CSE 373 SP 04 - Digraphs 2 27

Inductive Step

• Inductive Hypothesis: Suppose after step k-1
that C[i,j] contains a 1 if there is a path from i
to j through vertices 1,…,k-1.

• Induction: Consider step k, which does
C[i,j] := C[i,j] ∪ (C[i,k] ∩ C[k,j]);

Either C[i,j] is already 1 or there is a new path
through vertex k, which makes it 1.

or and

5/11/2004 CSE 373 SP 04 - Digraphs 2 28

Back to Weighted graphs:
Matrix Representation

• C[i,j] = the cost of the edge (i,j)
› C[i,i] = 0 because no cost to stay where you are
› C[i,j] = infinity (:) if no edge from i to j.

1 2 3 4 5 6 7
1 0 2 : 1 : : :
2 : 0 : 3 10 : :
3 4 : 0 : : 5 :
4 : : 2 0 2 8 4
5 : : : : 0 : 6
6 : : : : : 0 :
7 : : : : : 1 0

C

5/11/2004 CSE 373 SP 04 - Digraphs 2 29

Floyd – Warshall Algorithm

All_Pairs_Shortest_Path {
for k = 1 to n do
for i = 1 to n do
for j = 1 to n do
C[i,j] := min(C[i,j], C[i,k] + C[k,j]);

}

Note x + : = : by definition (: is infinity)

On termination C[i,j] is the length of the shortest path from i to j.

// Start with the cost matrix C

old cost updated new cost

5/11/2004 CSE 373 SP 04 - Digraphs 2 30

The Computation
1 2 3 4 5 6 7

1 0 2 : 1 : : :
2 : 0 : 3 10 : :
3 4 : 0 : : 5 :
4 : : 2 0 2 8 4
5 : : : : 0 : 6
6 : : : : : 0 :
7 : : : : : 1 0

C 1 2 3 4 5 6 7
1 0 2 3 1 3 6 5
2 9 0 5 3 5 8 7
3 4 6 0 5 4 5 6
4 6 8 2 0 2 5 4
5 : : : : 0 7 6
6 : : : : : 0 :
7 : : : : : 1 0

C

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

6

5/11/2004 CSE 373 SP 04 - Digraphs 2 31

Time Complexity of All Pairs
Shortest Path

• n is the number of vertices
• Three nested loops. O(n3)

› Shortest paths can be found too (see the book).

• Repeated Dijkstra’s algorithm
› O(n(n +m)log n) (= O(n3 log n) for dense graphs).
› Run Dijkstra starting at each vertex.
› But, Dijkstra also gives the shortest paths not just

their lengths.

