Directed Graphs (Part II)

CSE 373
Data Structures
Lecture 19

Dijkstra's Shortest Path Algorithm

- Initialize the cost of s to 0 , and all the rest of the nodes to ∞
- Initialize set S to be \varnothing
, S is the set of nodes to which we have a shortest path
- While S is not all vertices
, Select the node A with the lowest cost that is not in S and identify the node as now being in S
, for each node B adjacent to A
- if $\operatorname{cost}(A)+\operatorname{cost}(A, B)<B$'s currently known cost
$-\operatorname{set} \operatorname{cost}(B)=\operatorname{cost}(A)+\operatorname{cost}(A, B)$
- set previous $(B)=A$ so that we can remember the path

Example: Initialization

Pick vertex not in S with lowest cost.

Example: Update Cost neighbors

$\operatorname{Cost}\left(\mathrm{v}_{2}\right)=2$
$\operatorname{Cost}\left(\mathrm{v}_{4}\right)=1$

Example: pick vertex with lowest cost and add it to S

Pick vertex not in S with lowest cost, i.e., V_{4}

Example: update neighbors

$\operatorname{Cost}\left(\mathrm{v}_{3}\right)=1+2=3$ $\operatorname{Cost}\left(\mathrm{v}_{5}\right)=1+2=3$
$\operatorname{Cost}\left(\mathrm{v}_{6}\right)=1+8=9$
$\operatorname{Cost}\left(\mathrm{v}_{7}\right)=1+4=5$

Example (Ct'd)

Pick vertex not in S with lowest cost $\left(\mathrm{v}_{2}\right)$ and update neighbors

Example: (ct'd)

Pick vertex not in $\mathrm{S}\left(\mathrm{v}_{5}\right)$ with lowest cost and update neighbors

Example: (ct'd)

Pick vertex not in S with lowest $\operatorname{cost}\left(\mathrm{v}_{7}\right)$ and update neighbors

Example: (ct'd)

Pick vertex not in S with lowest $\operatorname{cost}\left(\mathrm{v}_{7}\right)$ and update neighbors

Previous cost
$\operatorname{Cost}\left(v_{6}\right)=\min (8,5+1)=6$

Example (end)

Pick vertex not in S with lowest cost $\left(v_{6}\right)$ and update neighbors

Data Structures

- Adjacency Lists previous cost priority queue pointers

Priority queue for finding and deleting lowest cost vertex and for decreasing costs (Binary Heap works)

Priority Queue

Priority Queue

Priority Queue

Time Complexity

- n vertices and m edges
- Initialize data structures $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- Find min cost vertices $O(n \log n)$
, n delete mins
- Update costs O (m log n)
, Potentially m updates
- Update previous pointers $O(m)$
, Potentially m updates
- Total time $\mathrm{O}((\mathrm{n}+\mathrm{m}) \log \mathrm{n})$ - very fast.

Correctness

- Dijkstra's algorithm is an example of a greedy algorithm
- Greedy algorithms always make choices that currently seem the best
, Short-sighted - no consideration of long-term or global issues
, Locally optimal does not always mean globally optimal
- In Dijkstra's case - choose the least cost node, but what if there is another path through other vertices that is cheaper?

"Cloudy" Proof

- If the path to G is the next shortest path, the path to P must be at least as long. Therefore, any path through P to G cannot be shorter!

Inside the Cloud (Proof)

- Everything inside the cloud has the correct shortest path
- Proof is by induction on the number of nodes in the cloud:
, Base case: Initial cloud is just the source with shortest path 0
, Inductive hypothesis: cloud of k-1 nodes all have shortest paths
, Inductive step: choose the least cost node $G \rightarrow$ has to be the shortest path to G (previous slide). Add k-th node G to the cloud

All Pairs Shortest Path

- Given a edge weighted directed graph $\mathrm{G}=$ (V,E) find for all u, v in V the length of the shortest path from u to v. Use matrix representation.
C
1
2
2
4
4
5
6
7 $\left(\begin{array}{rrrrrrr}0 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 0 & : & 1 & : & : & : \\ 4 & : & 10 & : & : \\ : & : & : & : & : & 5 & : \\ : & : & : & 0 & : & : & 0 \\ : & : & 1 & 0\end{array}\right)$

A (simpler) Related Problem: Transitive Closure

- Given a digraph $G(V, E)$ the transitive closure is a digraph $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ such that
, $\mathrm{V}^{\prime}=\mathrm{V}$ (same set of vertices)
, If $\left(v_{i}, v_{i+1}, \ldots, v_{k}\right)$ is a path in G, then $\left(v_{i}, v_{k}\right)$ is an edge of E '

Unweighted Digraph Boolean Matrix Representation

- C is called the connectivity matrix
C
1
1
2
3
4
5
6
7
7 $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

Transitive Closure

C
1
1
2
3
4
5
6
7 $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

On the graph, we show only the edges
added with 1 as origin. The matrix represents
the full transitive closure.

Finding Paths of Length 2

```
Length2 { //Initialization of C2[i,j]
for k = 1 to n // to all 0's not shown
    for i = l to n do
        for j = 1 to n do
        C2[i,j] := C2[i,j] \cup (C[i,k] \cap C[k,j]);
}
where }\cap\mathrm{ is Boolean And (&&) and U is Boolean OR (||)
This means if there is an edge from i to k
AND an edge from k to j, then there is a path
of length 2 between i and j.
Column k (C[i,k]) represents the predecessors of k
Row k (C[k,j]) represents the successors of k

\section*{Paths of Length 2}
C
1
1
2
3
4
4
5
6
7 \(\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)\)

C2
\[
\begin{gathered}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
0 \\
\hline 03
\end{gathered}\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \text { Digraphs (part II) Lecture } 19
\end{array}\right.
\]

Time \(O\left(n^{3}\right)\)


\section*{Transitive Closure}
- Union of paths of length 0 , length 1 , length \(2, \ldots\), length \(n-1\).
, Time complexity \(\mathrm{n}^{*} \mathrm{O}\left(\mathrm{n}^{3}\right)=\mathrm{O}\left(\mathrm{n}^{4}\right)\)
- There exists a better \(\left(\mathrm{O}\left(\mathrm{n}^{3}\right)\right)\) algorithm: Warshall's algorithm

\section*{Warshall Algorithm}
```

TransitiveClosure \{
for $k=1$ to n do
for $i=1$ to n do
for $j=1$ to n do
C [i,j] := C[i,j] $\cup(C[i, k] \cap C[k, j]) ;$
\}

```
where C[i,j] is the original connectivity matrix

\section*{Proof of Correctness}
- After the k-th time through the loop, \(C[i, j]=1\) if there is a path from i to \(j\) that only passes through vertices numbered \(1,2, \ldots, k\) (except for the initial edges)
- Base case: \(k=1 . C[i, j]=1\) for the initial connectivity matrix (path of length 0) and \(C[i, j]=1\) if there is a path \((i, 1, j)\)

\section*{Cloud Argument}


\section*{Inductive Step}
- Assume true for k-1.
, All paths from i to j that only go through vertices \(1,2, \ldots, k\) do not go through vertex k at all.
- \(\mathrm{C}_{\mathrm{k}}[\mathrm{i}, \mathrm{j}]=\mathrm{C}_{\mathrm{k}-1}[\mathrm{i}, \mathrm{j}]\left(\mathrm{C}_{\mathrm{k}}[\mathrm{i}, \mathrm{j}]\right.\) is result after k passes)
, A path from i to j that goes through (vertices 1,2, ..., k must go through vertex k.
- \(\mathrm{C}_{\mathrm{k}}[\mathrm{i}, \mathrm{j}]=\mathrm{C}_{\mathrm{k}-1}[\mathrm{i}, \mathrm{k}]+\mathrm{C}_{\mathrm{k}-1}[\mathrm{k}, \mathrm{j}]\)

\section*{Back to Weighted graphs: Matrix Representation}
- \(C[i, j]=\) the cost of the edge ( \(\mathrm{i}, \mathrm{j}\) )
, \(C[i, i]=0\) because no cost to stay where you are
, \(C[i, j]=\) infinity (:) if no edge from i to \(j\).
\[
\begin{aligned}
& \mathrm{C} \\
& 1 \\
& 1 \\
& 2 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 5 \\
& 6 \\
& 7
\end{aligned}\left(\begin{array}{rrrrrrr}
0 & 2 & 3 & 4 & 5 & 6 & 7 \\
7 & 0 & : & 0 & 3 & 10 & : \\
: & : & 2 & 0 & : & : & 5 \\
: & : & : & : & 0 & 0 & 4 \\
: & : & : & : & 0 & : \\
1 & : & 0
\end{array}\right)
\]

\section*{Floyd - Warshall Algorithm}
```

All_Pairs_Shortest_Path {
for k = 1 to n do
for i = 1 to n do
for j = 1 to n do
C[i,j] := min(C[i,j], C[i,k] + C[k,j]);
}
Note x + : = : by definition

```

On termination \(C[i, j]\) is the length of the shortest path from \(i\) to \(j\).

\section*{The Computation}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C & & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1 & ( 0 & 2 & : & 1 & : & : & : \\
\hline 2 & : & 0 & : & 3 & 10 & : & : \\
\hline 3 & 4 & : & 0 & : & : & 5 & : \\
\hline 4 & : & : & 2 & 0 & 2 & 8 & 4 \\
\hline 5 & : & : & : & : & 0 & : & 6 \\
\hline 6 & : & : & & : & : & 0 & : \\
\hline 7 & & & & & & 1 & 0 \\
\hline
\end{tabular}
\(\left.\begin{array}{llllllll}\text { C } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 \\ 2 & 0 & 2 & 3 & 1 & 3 & 6 & 5 \\ 3 & 9 & 0 & 5 & 3 & 5 & 8 & 7 \\ 4 & 6 & 0 & 5 & 4 & 5 & 6 \\ 4 & 6 & 8 & 2 & 0 & 2 & 5 & 4 \\ 5 & : & : & : & : & 0 & 7 & 6 \\ 6 & : & : & : & : & : & 0 & : \\ 7 & : & : & : & : & : & 1 & 0\end{array}\right)\)


\section*{Proof of Correctness}
- After the k-th time through the loop C[i,j] is the length of the shortest path that only passes through vertices numbered 1,2,...,k.
, Let \(\mathrm{C}_{\mathrm{k}}[i, j]\) be \(\mathrm{C}[i, j]\) after \(k\) time through the loop.
- Base case: \(k=0 . C_{0}[i, j]\) is the cost of an edge that does not pass through any vertices.

\section*{Inductive Step}
- Assume true for k-1.
, A shortest path from i to \(j\) that only goes through vertices \(1,2, \ldots, k\) does not go through vertex k at all.
- \(\mathrm{C}_{k}[i, j]=\mathrm{C}_{\mathrm{k}-1}[\mathrm{i}, \mathrm{j}]\)
, All shortest paths from i to \(j\) that only go through vertices \(1,2, \ldots\), \(k\) must go through vertex k .
- \(\mathrm{C}_{\mathrm{k}}[\mathrm{i}, \mathrm{j}]=\mathrm{C}_{\mathrm{k}-1}[\mathrm{i}, \mathrm{k}]+\mathrm{C}_{\mathrm{k}-1}[\mathrm{k}, \mathrm{j}]\)

\section*{Cloud Argument}


\section*{Time Complexity of All Pairs Shortest Path}
- n is the number of vertices
- Three nested loops. O( \(n^{3}\) )
, Shortest paths can be found too (see the book).
- Repeated Dijkstra's algorithm
, \(\mathrm{O}(\mathrm{n}(\mathrm{n}+\mathrm{m}) \log \mathrm{n})\left(=\mathrm{O}\left(\mathrm{n}^{3} \log \mathrm{n}\right)\right.\) for dense graphs \()\).
, Run Dijkstra starting at each vertex.
, Dijkstra also gives the shortest paths not just their lengths.```

