Graph Terminology

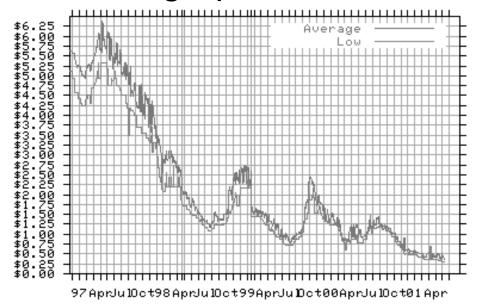
CSE 373 Data Structures Lecture 17

Reading

- Reading
 - > Section 9.1

What are graphs?

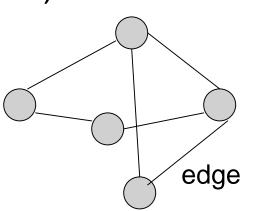
• Yes, this is a graph....



 But we are interested in a different kind of "graph"

Graphs

- Graphs are composed of
 - › Nodes (vertices)
 - > Edges (arcs) node



Varieties

- Nodes
 - > Labeled or unlabeled
- Edges
 - > Directed or undirected
 - > Labeled or unlabeled

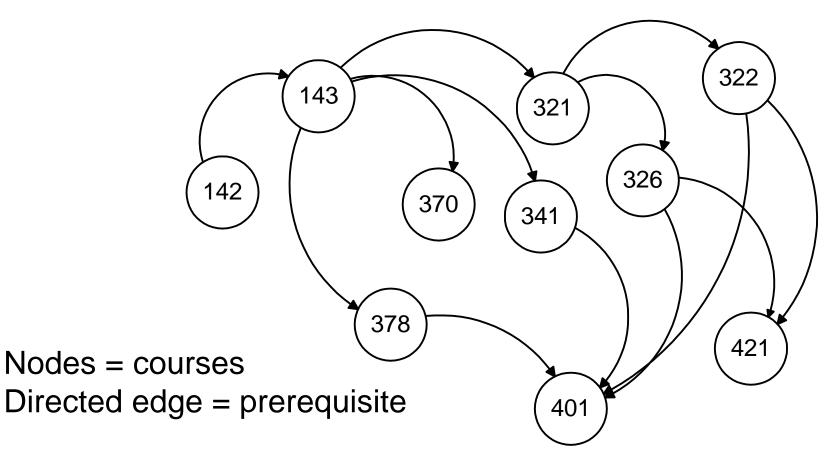
Motivation for Graphs

node node Consider the data structures we have Value Next Value Next looked at so far... Linked list: nodes with 1 incoming edge + 1 outgoing edge Binary trees/heaps: nodes with 1 • incoming edge + 2 outgoing edges Binomial trees/B-trees: nodes with 1 incoming edge + multiple outgoing 97 edges <u>Up-trees</u>: nodes with multiple incoming edges + 1 outgoing edge a h

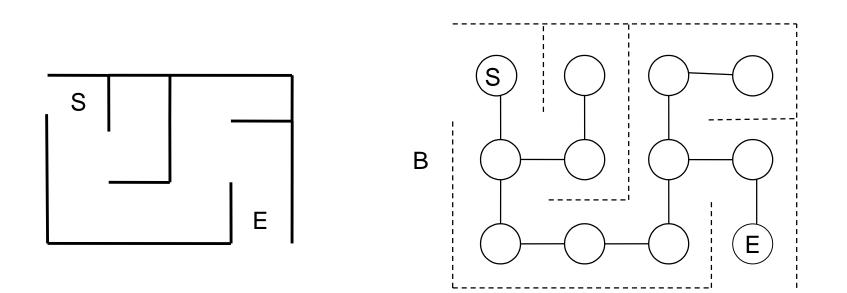
Motivation for Graphs

- How can you generalize these data structures?
- Consider data structures for representing the following problems...

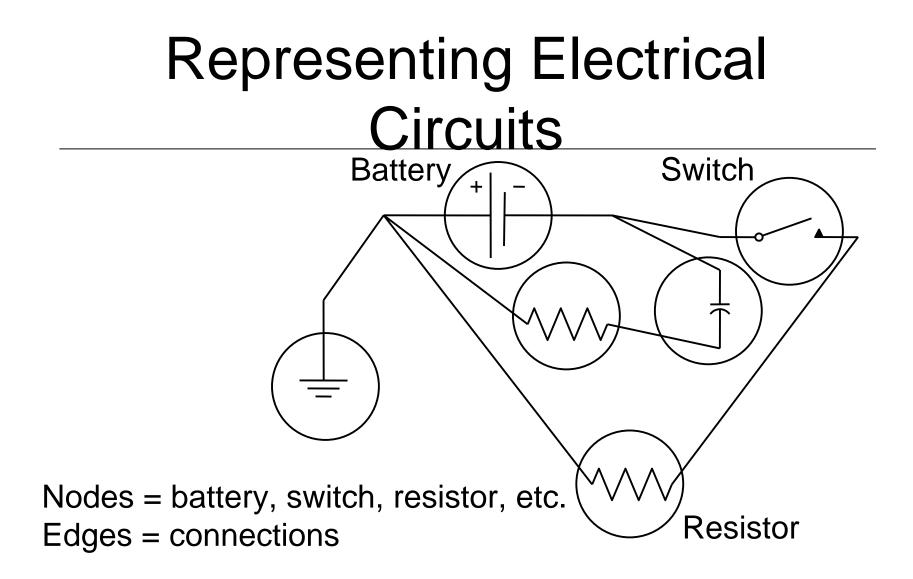
CSE Course Prerequisites at UW



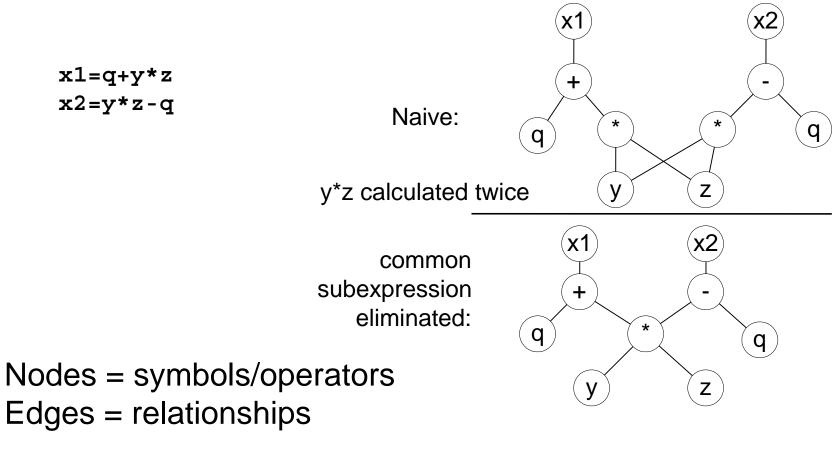
Representing a Maze



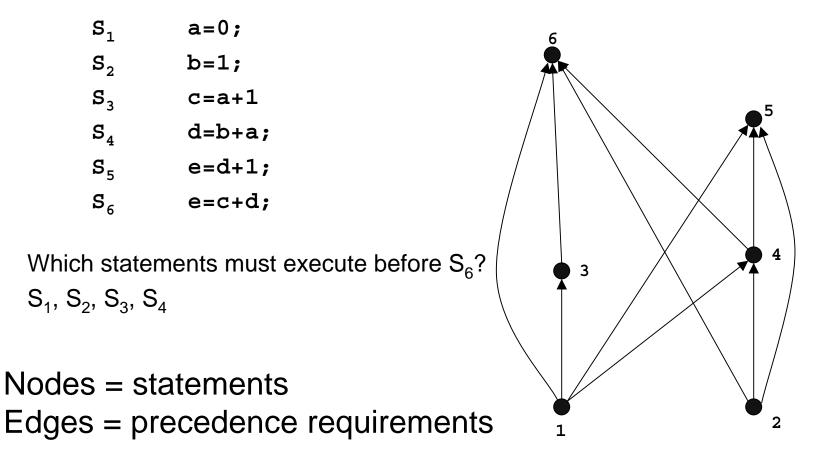
Nodes = rooms Edge = door or passage



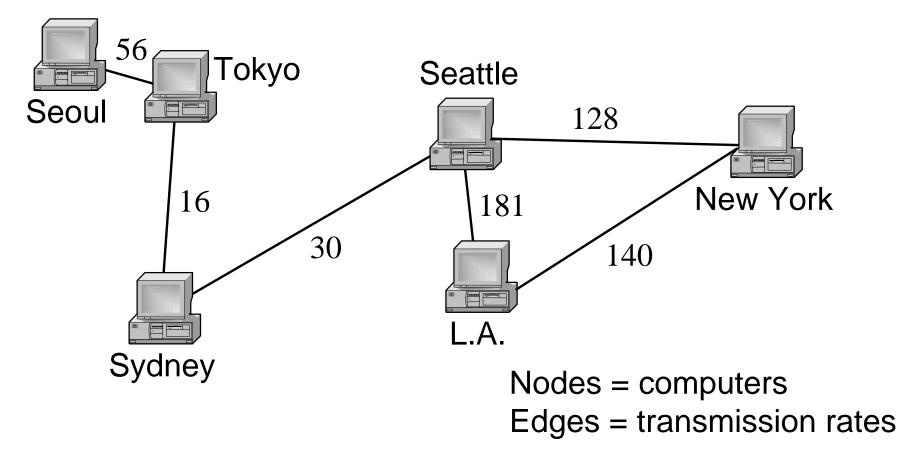
Program statements



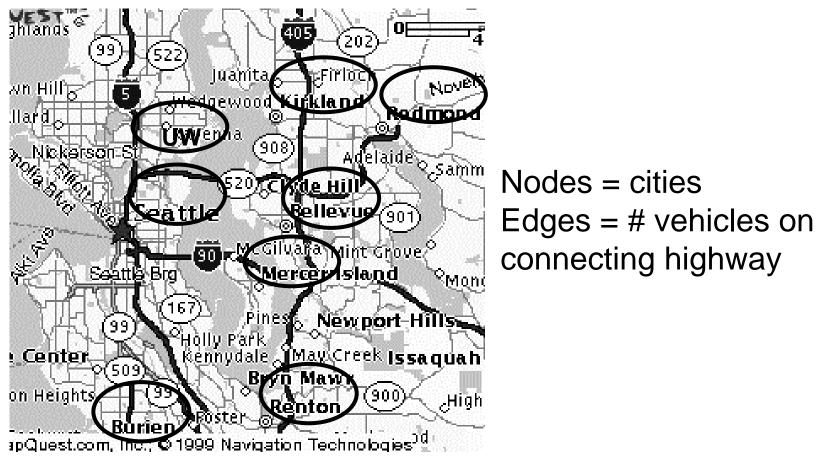
Precedence



Information Transmission in a Computer Network



Traffic Flow on Highways

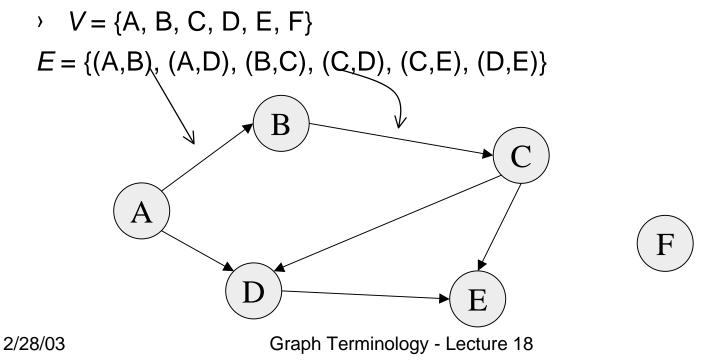


Graph Definition

- A graph is simply a collection of nodes plus edges
 - Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
 - > V is a set of vertices or nodes
 - > *E* is a set of edges that connect vertices

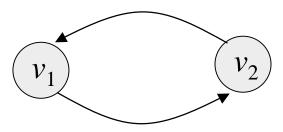
Graph Example

- Here is a directed graph G = (V, E)
 - > Each <u>edge</u> is a pair (v_1, v_2) , where v_1, v_2 are vertices in V

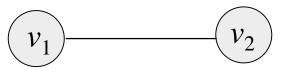


Directed vs Undirected Graphs

If the order of edge pairs (v₁, v₂) matters, the graph is directed (also called a digraph): (v₁, v₂) ≠ (v₂, v₁)



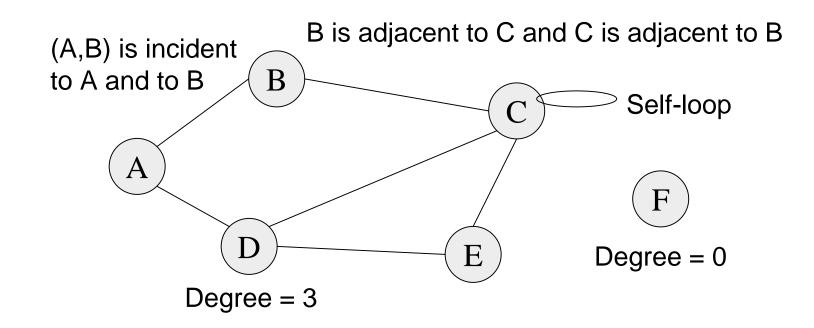
• If the order of edge pairs (v_1, v_2) does not matter, the graph is called an undirected graph: in this case, $(v_1, v_2) = (v_2, v_1)$



Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if {u,v} is an edge in G
 - > edge e = {u,v} is incident with vertex u and vertex
 v
- The degree of a vertex in an undirected graph is the number of edges incident with it
 - > a self-loop counts twice (both ends count)
 - > denoted with deg(v)

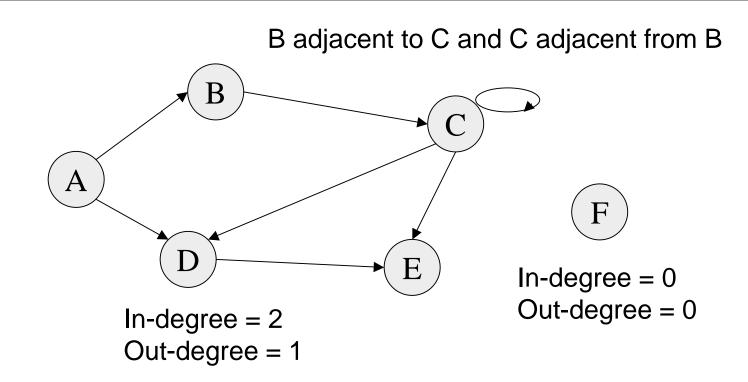
Undirected Terminology



Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an edge in G
 - vertex u is the initial vertex of (u,v)
- Vertex v is adjacent from vertex u
 - vertex v is the terminal (or end) vertex of (u,v)
- Degree
 - in-degree is the number of edges with the vertex as the terminal vertex
 - out-degree is the number of edges with the vertex as the initial vertex

Directed Terminology



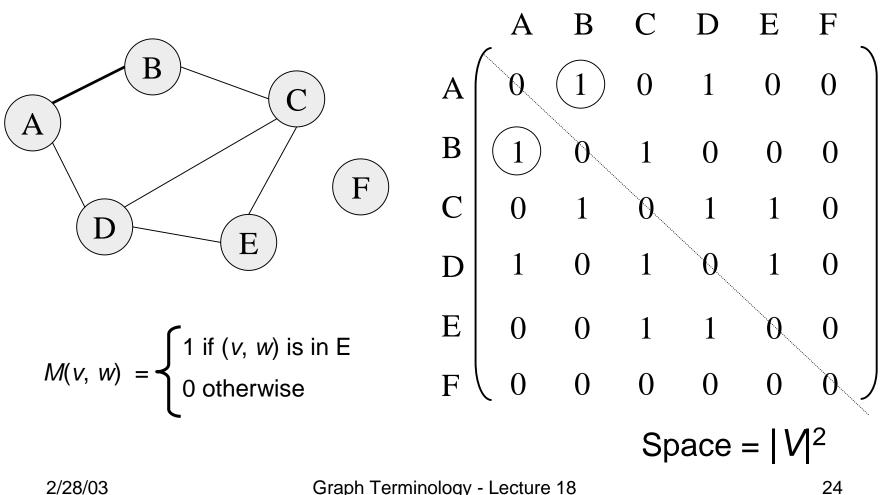
Handshaking Theorem

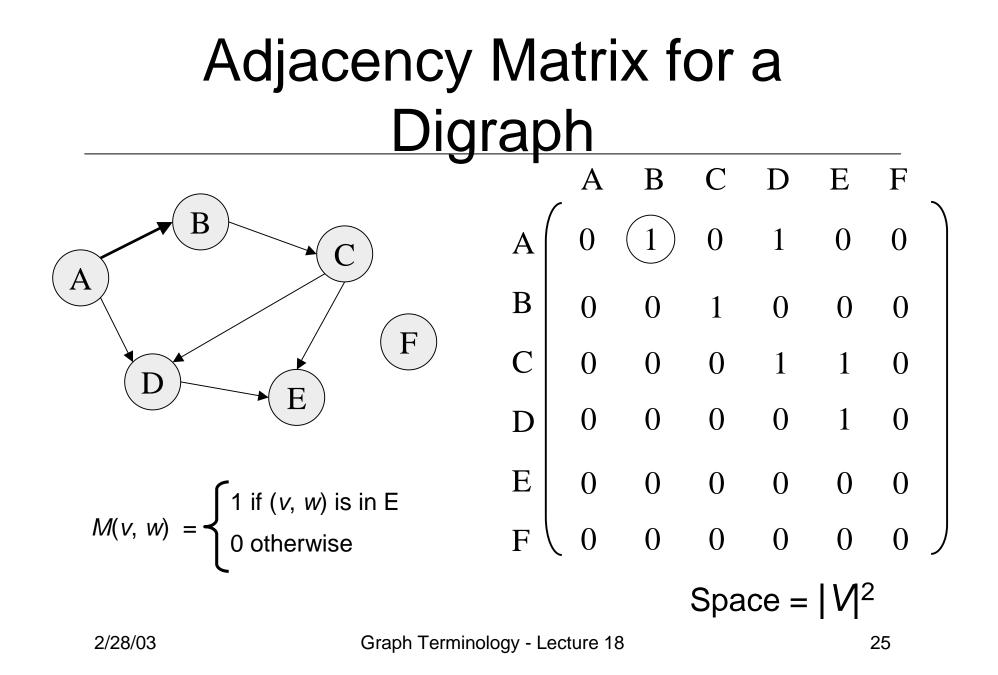
- Let G=(V,E) be an undirected graph with |E|=e edges
- Then $2e = \sum deg(v)$
- Every edge contributes +1 to the degree of each of the two vertices it is incident with
 - number of edges is exactly half the sum of deg(v)
 - > the sum of the deg(v) values must be even

Graph Representations

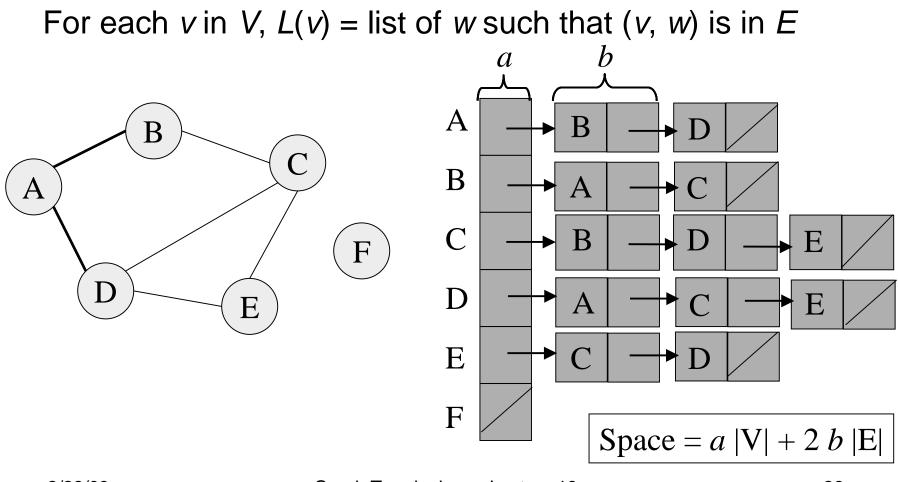
- Space and time are analyzed in terms of:
 - Number of vertices = |V| and
 - Number of edges = |E|
- There are at least two ways of representing graphs:
 - The adjacency matrix representation
 - The *adjacency list* representation

Adjacency Matrix



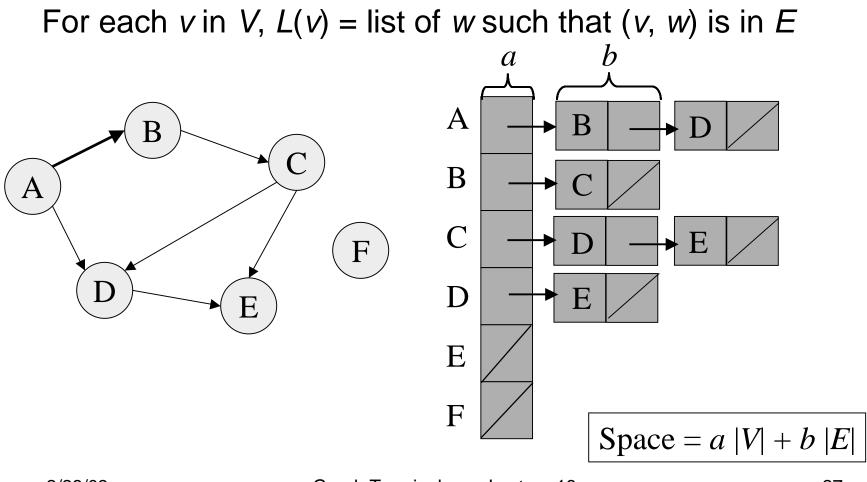


Adjacency List



Graph Terminology - Lecture 18

Adjacency List for a Digraph



Graph Terminology - Lecture 18