Disjoint Union / Find

CSE 373
Data Structures
Lecture 16

Reading

 Reading
> Chapter 8 (you can skip Section 6)

2/25/03 Union/Find - Lecture 16

Equivalence Relations

e Arelation R Is defined on set S If for
every pair of elementsa,b&€ S,aRDbis
either true or false.

* An equivalence relation is a relation R
that satisfies the 3 properties:
> Reflexive:aR aforalla & S
> Symmetric:aRbiffbRa;a,b& S
> Transitive:aRbandb RcimpliesaR ¢

2/25/03 Union/Find - Lecture 16 3

Equivalence Classes

« Given an equivalence relation R, decide
whether a pair of elements a, b€ Sis
such thata R b.

 The equivalence class of an element a
IS the subset of S of all elements
related to a.

e Equivalence classes are disjoint sets

2/25/03 Union/Find - Lecture 16 4

Dynamic Equivalence
Problem

o Starting with each element in a singleton set,
and an equivalence relation, build the
equivalence classes

* Requires two operations:

> Find the equivalence class (set) of a given
element

> Union of two sets

e |tis a dynamic (on-line) problem because the
sets change during the operations and Find
must be able to cope!

2/25/03 Union/Find - Lecture 16

Disjoint Union - Find

e Maintain a set of pairwise disjoint sets.
> {3,5,7}, {4,2,8}, {9}, {1,6}

e Each set has a unigue name, one of its
members
> {3,5,7}, {4,2,8}, {9}, {1,6}

2/25/03 Union/Find - Lecture 16

Union

 Union(x,y) — take the union of two sets
named X and y
> {3,5,7}, {4,2,8}, {9}, {1,6}
> Union(5,1)
{3,5,7,1,6}, {4,2,8}, {9},

2/25/03 Union/Find - Lecture 16

Find

* Find(x) — return the name of the set
containing X.
> {3.5,7,1,6}, {4,2,8}, {9},
> Find(1) =5
> Find(4) = 8

2/25/03 Union/Find - Lecture 16

An Application

 Build a random maze by erasing edges.

2/25/03 Union/Find - Lecture 16

An Application (ct'd)

 Pick Start and End

Start

End

2/25/03 Union/Find - Lecture 16

10

An Application (ct'd)

 Repeatedly pick random edges to delete.

Start

End

2/25/03 Union/Find - Lecture 16

11

Desired Properties

 None of the boundary Is deleted

e Every cell is reachable from every other
cell.

 There are no cycles — no cell can reach
itself by a path unless it retraces some
part of the path.

2/25/03 Union/Find - Lecture 16 12

A Cycle (we don’t want that)

2/25/03

Start

Al

\~

)

Union/Find - Lecture 16

End

13

A Good Solution

2/25/03

Start

End

Union/Find - Lecture 16

14

Good Solution : A Hidden
Tree

2/25/03

Start

End

Union/Find - Lecture 16

15

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Start 1 | 2 | 3| 4| 5 | 6

7 38 9 |10 | 11 | 12

13 |14 | 15 | 16 | 17 | 18

19 | 20 | 21 | 22 | 23 | 24

25 | 26 | 27 | 28 | 29 | 30

31 ({32 |33 |34 | 35| 36 End

2/25/03 Union/Find - Lecture 16 16

Basic Algorithm

2/25

S = set of sets of connected cells
E = set of edges
Maze = set of maze edges initially empty

While there is more than one setin S
pick a random edge (x,y) and remove from E
u = Find(x); v := Find(y);
If u #vthen
Union(u,v) //knock down the wall between the cells (cells in
//the same set are connected)
else
add (x,y) to Maze //don’t remove because there is already
/[a path between x and y
All remaining members of E together with Maze form the maze_

nnnnnn actire 16
ULlUT W LU

Example Step

Pick (8,14) S
{1,2,7,8,9,13,19}
{3}
Stat 1 2 | 3 | 4| 5| 6 {4}
———— {5}
V4 8 9 10 | 11 | 12 {6}
{10}
13|14 | 15 16 | 17 | 18 11.17)
19 | 20 | 21 | 22 23| 24 {12}
{14,20,26,27}
25 |26 27 |28 |29 30 {15,16,21}

31 |32 33 34 35 36 ENd

{22,23,24,29,30,32
2/25/03 Union/Find - Lecture 16 33,34,35,36} 18

Example

S S

gi&%&&l&w} ind(8) = 7 {1,2,7,8,9,13,19,14,20 26,27}
3 In =

{4) Find(14) = 20 E}

%%} Union(7,20) %%}

B L)

12 12

b sisz

o 23 24 2 , {22,23,24,29,39,32

{3é 34 34\}3’ 3%}3 o 53:34,35,36]

2/25/03 Union/Find - Lecture 16 19

Example

Start

2/25/03

Pick (19,20)

13
19

25

N

14
20
26

4

10

15
21

16

11 | 12

17 | 18

22

27

28

31

32

33

34

23 | 24

29 30

35 36 End

Union/Find - Lecture 16

S

{1,2,7,8,9,13,19
14,20,26,27}

3}

4}

B}

16}

10}

11,17}

12}

{15,16,21}

[22,23,24,29,39,32
33,34,35,36} 20

Example at the End

Start 1 2 ‘ 3

7
13
19

25

8
14
20
26

9

4

5

6

10

15
21

16

11

17

12

18

22

27

28

31

32

33

34

23
29

35 36 End

24

30

2/25/03

Union/Find - Lecture 16

S
{1,2,3,4,5,6,7,... 36}

— Maze

21

Up-Tree for DU/F

Initial state @ @ @ @ @ @ @

Intermediate (1) (3) @
State \ ’/
Roots are the names of each set. @{

2/25/03 Union/Find - Lecture 16 22

Find Operation

* Find(x) follow x to the root and return

the root

Find(6) =7

2/25/03 Union/Find - Lecture 16

23

Union Operation

e Union(l,}) - assuming | and | roots, point |
to J.

. - - Union(1,7)
z $ ®
®

2/25/03 Union/Find - Lecture 16 24

Simple Implementation

« Array of indices (Up]i] is parent of i)

Up [X] = 0 means
12 3 45 617 X IS a root.

up |0|1]0|7|7|5]0

@é} ® @é
.

2/25/03 Union/Find - Lecture 16 25

Union

Union(upl[] : integer array, x,y : integer)
//precondition: x and y are roots//
Uplx] :=vy

}

Constant Time!

2/25/03 Union/Find - Lecture 16

26

Find

 Design Find operator
> Recursive version
> |terative version

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
27?7

2/25/03 Union/Find - Lecture 16

27

A Bad Case

2/25/03

© @ & - O

6‘ /@) @ Unici)n(2,3)

@))
6‘ /@ Union(n-1,n)

/@

) Find(1) n steps!!

6‘ Union/Find - Lecture 16

Union(1,2)

28

Weighted Union

 Weighted Union (weight = number of nodes)

> Always point the smaller tree to the root of the
larger tree

W-Union(1,7)

2/25/03 Union/Find - Lecture 16 29

Example Again

© @ & - O

Union(1,2)

@ @ " @

6 Union(2,3)

@ |
Union(n-1,n)

6’% Find(1) constant time

2/25/03 Union/Find - Lecture 16 30

Analysis of Weighted Union

With weighted union an up-tree of height h
has weight at least 2".
Proof by induction
> Basis: h = 0. The up-tree has one node, 2°=1
> Inductive step: Assume true for all h’ < h.

T W(T,) > W(Tp) > 2

Minimum weight T Weighfted Indﬁction
up-tree of height h hf union hypothesis
formed by W(T) > 2oh-1 4 2h-1 = 2h

weighted unions

2/25/03 Union/Find - Lecture 16 31

Analysis of Weighted Union

e Let T be an up-tree of weight n formed
by weighted union. Let h be its height.

e n>2h

* log,n>h

 Find(x) in tree T takes O(log n) time.
e Can we do better?

2/25/03 Union/Find - Lecture 16 32

Worst Case for Weighted
Union

n/2 Weighted Unions

58888888

n/4 Weighted Unions

Union/Find - Lecture 16

Example of Worst Cast (cont’)

Aftern-1=n/2 + n/4 + ...+ 1 Weighted Unions

0;3 % 0;3 i\p log,n

Q %
If there are n = 2k nodes then the longest
path from leaf to root has length k.

N Find

2/25/03 Union/Find - Lecture 16 34

Elegant Array Implementation

2@ 1@ 4

s g
o

1 2 345 6
Can save the extra
_up 01110171715 space by storing the
WEIght 2 1 complement of weight

in the space reserved
for the root

2/25/03 Union/Find - Lecture 16

Welighted Union

2/25/03

W-Union(i,j : index) {
//1 and j are roots//
wi := weight[i];
wj := weight[j];

if wi < wj then
up[i] := 3J;
welight [7]
else
up [j] :=1;
welight [1]

wili + wWJ;

wil +wj;

Union/Find - Lecture 16

36

Path Compression

 On a Find operation point all the nodes on the
search path directly to the root.

% d et s
: @/@f e g

10

2/25/03 Union/Find - Lecture 16 37

Self-Adjustment Works

»

</
AN
TN
A\
N
T

Union/Find - Lecture 16

Path Compression Find

PC-Find (i : index) {
r := 1i;
while up([r] # 0 do //find root//
r := uplrl];
if 1 # r then //compress path//
k := upli];
while k # r do
up [1] := r;
1 := k;
k := upl[k]
return (r)

}

2/25/03 Union/Find - Lecture 16

Example

2/25/03

L od
> I

—~® a

Union/Find - Lecture 16

40

Disjoint Union / Find
with Weighted Union and PC

* \Worst case time complexity for a W-
Union is O(1) and for a PC-Find Is
O(log n).

 Time complexity for m > n operations on

n elements is O(m log* n) where log* n
IS a very slow growing function.

> log * n < 7 for all reasonable n. Essentially
constant time per operation!

2/25/03 Union/Find - Lecture 16 41

Amortized Complexity

 For disjoint union / find with weighted
union and path compression.

> average time per operation is essentially a
constant.

> worst case time for a PC-Find is O(log n).

* An individual operation can be costly,
but over time the average cost per
operation Is not.

2/25/03 Union/Find - Lecture 16 42

Find Solutions

Recursive

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//

if up[x] = 0 then return x

else return Find (up,up[x]) ;

}

lterative

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
while up[x] # 0 do

X := uplx];
return X;

}

2/25/03 Union/Find - Lecture 16

43

