
Sorting (Part III)

CSE 373
Data Structures

Lecture 15

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

2

Reading

• Reading
› Sections 7.8-7.9 and radix sort in Section 3.2.6

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

3

How fast can we sort?

• Heapsort, Mergesort, and Quicksort all
run in O(N log N) best case running
time

• Can we do any better?
• No, if sorting is comparison-based.

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

4

Sorting Model

• Recall the basic assumption: we can only
compare two elements at a time
› we can only reduce the possible solution space by

half each time we make a comparison
• Suppose you are given N elements

› Assume no duplicates
• How many possible orderings can you get?

› Example: a, b, c (N = 3)

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

5

Permutations

• How many possible orderings can you get?
› Example: a, b, c (N = 3)
› (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
› 6 orderings = 3•2•1 = 3! (i.e., “3 factorial”)
› All the possible permutations of a set of 3 elements

• For N elements
› N choices for the first position, (N-1) choices for the

second position, …, (2) choices, 1 choice
› N(N-1)(N-2)Λ(2)(1)= N! possible orderings

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

6

Decision Tree
a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

The leaves contain all the possible orderings of a, b, c

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

7

Decision Trees
• A Decision Tree is a Binary Tree such that:

› Each node = a set of orderings
• i.e., the remaining solution space

› Each edge = 1 comparison
› Each leaf = 1 unique ordering
› How many leaves for N distinct elements?

• N!, i.e., a leaf for each possible ordering

• Only 1 leaf has the ordering that is the
desired correctly sorted arrangement

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

8

Decision Trees and Sorting
• Every comparison-based sorting algorithm

corresponds to a decision tree
› Finds correct leaf by choosing edges to follow

• i.e., by making comparisons

› Each decision reduces the possible solution space
by one half

• Run time is ≥ maximum no. of comparisons
› maximum number of comparisons is the length of

the longest path in the decision tree, i.e. the height
of the tree

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

9

Decision Tree Example
a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

3! possible orders

actual order

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

10

How many leaves on a tree?

• Suppose you have a binary tree of height d .
How many leaves can the tree have?
› d = 1 at most 2 leaves,
› d = 2 at most 4 leaves, etc.

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

11

Lower bound on Height

• A binary tree of height d has at most 2d leaves
› depth d = 1 2 leaves, d = 2 4 leaves, etc.
› Can prove by induction

• Number of leaves, L < 2d

• Height d > log2 L
• The decision tree has N! leaves
• So the decision tree has height d ≥ log2(N!)

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

12

log(N!) is Ω(NlogN)

()

)log(
2

log
2

)2log(log
2

2
log

2

2
log)2log()1log(log

1log2log)2log()1log(log
)1()2()2()1(log)!log(

NN

NNNNN

NN

NNNN

NNN
NNNN

Ω=

−=−≥

≥

++−+−+≥

+++−+−+=
⋅−⋅−⋅=

Λ

Λ
Λ

select just the
first N/2 terms

each of the selected
terms is ≥ logN/2

nennn)/(2! π≈
Sterling’s formula

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

13

Ω(N log N)
• Run time of any comparison-based

sorting algorithm is Ω(N log N)
• Can we do better if we don’t use

comparisons?

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

14

Radix Sort: Sorting integers
• Historically goes back to the 1890 census.
• Radix sort = multi-pass bucket sort of integers

in the range 0 to BP-1
• Bucket-sort from least significant to most

significant “digit” (base B)
• Requires P(B+N) operations where P is the

number of passes (the number of base B digits
in the largest possible input number).

• If P and B are constants then O(N) time to sort!

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

15

67
123
38
3

721
9

537
478

Bucket sort
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses
B=10 and base 10
digits for simplicity of
demonstration. Larger
bucket counts should
be used in an actual
implementation.

Radix Sort Example

721
3

123
537
67

478
38
9

After 1st pass

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

16

Bucket sort
by 10’s
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

Radix Sort Example

721
3

123
537
67

478
38
9

After 1st pass After 2nd pass
3
9

721
123
537
38
67

478

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

17

Bucket sort
by 100’s
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

Radix Sort Example

After 2nd pass
3
9

721
123
537
38
67

478

After 3rd pass
3
9

38
67

123
478
537
721

Invariant: after k passes the low order k digits are sorted.

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

18

Implementation Options

• List
› List of data, bucket array of lists.
› Concatenate lists for each pass.

• Array / List
› Array of data, bucket array of lists.

• Array / Array
› Array of data, array for all buckets.
› Requires counting.

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

19

Array / Array

478
537

9
721

3
38

123
67

0
1
2
3
4
5
6
7

Data Array

0
1
0
2
0
0
0
2

0
1
2
3
4
5
6
7
8
9

2
1

Count Array

0
0
1
1
3
3
3
3

0
1
2
3
4
5
6
7
8
9

5
7

Address Array

add[0] := 0
add[i] := add[i-1] + count[i-1], i > 0

721
3

123
537
67

478
38

9

0
1
2
3
4
5
6
7

Target Array

Bucket i ranges from
add[i] to add[i+1]-1

1

3

7

8

9

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

20

Array / Array
• Pass 1 (over A)

› Calculate counts and addresses for 1st “digit”
• Pass 2 (over T)

› Move data from A to T
› Calculate counts and addresses for 2nd “digit”

• Pass 3 (over A)
› Move data from T to A
› Calculate counts and addresses for 3nd “digit”

• …
• In the end an additional copy may be needed.

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

21

Choosing Parameters for
Radix Sort

• N number of integers – given
• m bit numbers - given
• B number of buckets

› B = 2r : power of 2 so that calculations can be
done by shifting.

› N/B not too small, otherwise too many empty
buckets.

› P = m/r should be small.
• Example – 1 million 64 bit numbers. Choose

B = 216 =65,536. 1 Million / B ≈ 15 numbers
per bucket. P = 64/16 = 4 passes.

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

22

Properties of Radix Sort

• Not in-place
› needs lots of auxiliary storage.

• Stable
› equal keys always end up in same bucket

in the same order.
• Fast

› B = 2r buckets on m bit numbers

() time)2n
r
mO(r+

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

23

Internal versus External
Sorting

• So far assumed that accessing A[i] is fast –
Array A is stored in internal memory (RAM)
› Algorithms so far are good for internal sorting

• What if A is so large that it doesn’t fit in
internal memory?
› Data on disk or tape
› Delay in accessing A[i] – e.g. need to spin disk

and move head

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

24

Internal versus External
Sorting

• Need sorting algorithms that minimize
disk access time
› External sorting – Basic Idea:

• Load chunk of data into RAM, sort, store this
“run” on disk/tape

• Use the Merge routine from Mergesort to
merge runs

• Repeat until you have only one run (one sorted
chunk)

• Text gives some examples

2/24/03 Sorting Lower Bound, Radix Sort -
Lecture 15

25

Summary of Sorting

• Sorting choices:
› O(N2) – Bubblesort, Insertion Sort
› O(N log N) average case running time:

• Heapsort: In-place, not stable.
• Mergesort: O(N) extra space, stable.
• Quicksort: claimed fastest in practice but, O(N2) worst

case. Needs extra storage for recursion. Not stable.

› O(N) – Radix Sort: fast and stable. Not
comparison based. Not in-place.

