Sorting (Part III)

CSE 373
Data Structures
Lecture 15

Reading

- Reading
, Sections 7.8-7.9 and radix sort in Section 3.2.6

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ best case running time
- Can we do any better?
- No, if sorting is comparison-based.

Sorting Model

- Recall the basic assumption: we can only compare two elements at a time
, we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements
, Assume no duplicates
- How many possible orderings can you get?
, Example: a, b, c ($\mathrm{N}=3$)

Permutations

- How many possible orderings can you get?
, Example: $a, b, c \quad(N=3)$

, 6 orderings $=3 \cdot 2 \cdot 1=3$! (i.e., " 3 factorial")
, All the possible permutations of a set of 3 elements
- For N elements
, N choices for the first position, ($\mathrm{N}-1$) choices for the second position, ..., (2) choices, 1 choice
, $\mathrm{N}(\mathrm{N}-1)(\mathrm{N}-2) \Lambda(2)(1)=\mathrm{N}$! possible orderings

Decision Tree

The leaves contain all the possible orderings of a, b, c

Decision Trees

- A Decision Tree is a Binary Tree such that:
, Each node = a set of orderings
- i.e., the remaining solution space
, Each edge = 1 comparison
, Each leaf = 1 unique ordering
, How many leaves for N distinct elements?
- N!, i.e., a leaf for each possible ordering
- Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Decision Trees and Sorting

- Every comparison-based sorting algorithm corresponds to a decision tree
, Finds correct leaf by choosing edges to follow
- i.e., by making comparisons
, Each decision reduces the possible solution space by one half
- Run time is \geq maximum no. of comparisons
, maximum number of comparisons is the length of the longest path in the decision tree, i.e. the height of the tree

Decision Tree Example

How many leaves on a tree?

- Suppose you have a binary tree of height d. How many leaves can the tree have?
, d = $1 \rightarrow$ at most 2 leaves,
) $d=2 \rightarrow$ at most 4 leaves, etc.

Lower bound on Height

- A binary tree of height d has at most $\mathbf{2}^{d}$ leaves
, depth $d=1 \rightarrow 2$ leaves, $d=2 \rightarrow 4$ leaves, etc.
, Can prove by induction
- Number of leaves, $L \leq 2^{\text {d }}$
- Height $d \geq \log _{2} L$
- The decision tree has N ! leaves
- So the decision tree has height $d \geq \log _{2}(N!)$

$\log (N!)$ is $\Omega(N \log N)$

$\Omega(\mathrm{N} \log \mathrm{N})$

- Run time of any comparison-based sorting algorithm is $\Omega(\mathbf{N} \log \mathbf{N})$
- Can we do better if we don't use comparisons?

Radix Sort: Sorting integers

- Historically goes back to the 1890 census.
- Radix sort = multi-pass bucket sort of integers in the range 0 to $\mathrm{B}^{\mathrm{P}}-1$
- Bucket-sort from least significant to most significant "digit" (base B)
- Requires $P(B+N)$ operations where P is the number of passes (the number of base B digits in the largest possible input number).
- If P and B are constants then $\mathrm{O}(\mathrm{N})$ time to sort!

Radix Sort Example

Radix Sort Example

Radix Sort Example

After $2^{\text {nd }}$ pass 3
Bucket sort
by 100's
digit

After $3^{\text {rd }}$ pass 3
9
721
123
537
38
67
478

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\underline{0} 03$	$\underline{123}$			$\underline{478}$	$\underline{5} 37$		$\underline{721}$		
$\underline{0} 09$									
$\underline{0} 38$									
$\underline{0} 67$									

123 478 537

Invariant: after k passes the low order k digits are sorted.

Implementation Options

- List
, List of data, bucket array of lists.
, Concatenate lists for each pass.
- Array / List
, Array of data, bucket array of lists.
- Array / Array
, Array of data, array for all buckets.
) Requires counting.

Array / Array

Data Array Count Array

0	478
1	$53 \underline{7}$
2	$\underline{9}$
3	$72 \underline{1}$
4	$\underline{3}$
	$3 \underline{8}$
6	$12 \underline{3}$
7	$6 \underline{7}$

0	0
	0
	1
	0
	0
	2
	0
	0
	0
	0
8	2
	2
	1

0	0
1	0
2	1
3	1
4	3
5	3
6	3
7	3
8	5
9	7

Bucket i ranges from add[i] to add[i+1]-1

Array / Array

- Pass 1 (over A)
, Calculate counts and addresses for $1^{\text {st }}$ "digit"
- Pass 2 (over T)
, Move data from A to T
, Calculate counts and addresses for $2^{\text {nd }}$ "digit"
- Pass 3 (over A)
, Move data from T to A
, Calculate counts and addresses for $3^{\text {nd }}$ "digit"
- In the end an additional copy may be needed.

Choosing Parameters for Radix Sort

- N number of integers - given
- m bit numbers - given
- B number of buckets
, $B=2^{r}$: power of 2 so that calculations can be done by shifting.
, N/B not too small, otherwise too many empty buckets.
, $P=m / r$ should be small.
- Example - 1 million 64 bit numbers. Choose $B=2^{16}=65,536$. 1 Million $/ B \approx 15$ numbers

Properties of Radix Sort

- Not in-place
, needs lots of auxiliary storage.
- Stable
, equal keys always end up in same bucket in the same order.
- Fast
, $B=2^{r}$ buckets on m bit numbers

Internal versus External Sorting

- So far assumed that accessing $A[i]$ is fast Array A is stored in internal memory (RAM)
, Algorithms so far are good for internal sorting
- What if A is so large that it doesn't fit in internal memory?
, Data on disk or tape
, Delay in accessing $A[i]$ - e.g. need to spin disk and move head

Internal versus External Sorting

- Need sorting algorithms that minimize disk access time
, External sorting - Basic Idea:
- Load chunk of data into RAM, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples

Summary of Sorting

- Sorting choices:
, $\mathrm{O}\left(\mathrm{N}^{2}\right)$ - Bubblesort, Insertion Sort
, $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ average case running time:
- Heapsort: In-place, not stable.
- Mergesort: O(N) extra space, stable.
- Quicksort: claimed fastest in practice but, $\mathrm{O}\left(\mathrm{N}^{2}\right)$ worst case. Needs extra storage for recursion. Not stable.
, $\mathrm{O}(\mathrm{N})$ - Radix Sort: fast and stable. Not comparison based. Not in-place.

