Sorting (Part I)

CSE 373
Data Structures
Lecture 13

Reading

- Reading
, Sections 7.1-7.3 and 7.5

Sorting

- Input
, an array A of data records (Note: we have seen how to sort when elements are in linked lists: Mergesort)
, a key value in each data record
, a comparison function which imposes a consistent ordering on the keys (e.g., integers)
- Output
, reorganize the elements of A such that
- For any i and j, if $i<j$ then $A[i] \leq A[j]$

Consistent Ordering

- The comparison function must provided a consistent ordering on the set of possible keys
, You can compare any two keys and get back an indication of $a<b, a>b$, or $a=b$
, The comparison functions must be consistent
- If compare (a, b) says $a<b$, then compare (b, a) must say $b>a$
- If compare (a, b) says $a=b$, then compare (b, a) must say $b=a$
- If compare (a, b) says $a=b$, then equals (a, b) and equals (b, a) must say a=b

Why Sort?

- Sorting algorithms are among the most frequently used algorithms in computer science
- Allows binary search of an N-element array in $\mathrm{O}(\log \mathrm{N})$ time
- Allows $\mathrm{O}(1)$ time access to k th largest element in the array for any k
- Allows easy detection of any duplicates

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
, Is copying needed? O(n) additional space
, In-place sorting - no copying - O(1) additional space
, Somewhere in between for "temporary", e.g. O(logn) space
, External memory sorting - data so large that does not fit in memory

Time

- How fast is the algorithm?
, The definition of a sorted array A says that for any $i<j, A[i]<A[j]$
, This means that you need to at least check on each element at the very minimum, l.e., at least $\mathrm{O}(\mathrm{N})$
, And you could end up checking each element against every other element, which is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
, The big question is: How close to $\mathrm{O}(\mathrm{N})$ can you get?

Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
, E.g. Phone book sorted by name. Now sort by county - is the list still sorted by name within each county?
, Extremely important property for databases
, A stable sorting algorithm is one which does not rearrange the order of duplicate keys

Example

Stable Sort
Unstable Sort

Bubble Sort

- "Bubble" elements to to their proper place in the array by comparing elements i and $\mathrm{i}+1$, and swapping if $A[i]>A[i+1]$
, Bubble every element towards its correct position
- last position has the largest element
- then bubble every element except the last one towards its correct position
- then repeat until done or until the end of the quarter, whichever comes first ...

Bubblesort

```
bubble(A[1..n]: integer array, n : integer): {
    i, j : integer;
    for i = 1 to n-1 do
        for j = 2 to n-i+1 do
        if A[j-1] > A[j] then SWAP(A[j-1],A[j]);
    }
SWAP (a,b) : {
    t :integer;
    t:=a; a:=b; b:=t;
}
```


Put the largest element in its place

Put $2^{\text {nd }}$ largest element in its place

larger value?

Two elements done, only n-2 more to go ...

Bubble Sort: Just Say No

- "Bubble" elements to to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i]>A[i+1]$
- We bubblize for $\mathrm{i}=1$ to n (i.e, n times)
- Each bubblization is a loop that makes n-i comparisons
- This is $O\left(n^{2}\right)$

Insertion Sort

- What if first k elements of array are already sorted?

$$
>4,7,12,5,19,16
$$

- We can shift the tail of the sorted elements list down and then insert next element into proper position and we get k+1 sorted elements

$$
, \underline{4,5,7,12,19,16}
$$

Insertion Sort

```
InsertionSort(A[1..N]: integer array, N: integer) \{
    i, j, temp: integer ;
    for \(i=2\) to \(N\{\)
        temp := A[i];
        j : = i-1;
        while \(j>1\) and \(A[j-1]>\) temp \(\{\)
            A[j] :=A[j-1]; j := j-1; \(\}\)
        \(\mathrm{A}[\mathrm{j}]=\) temp;
    \}
\}
```

- Is Insertion sort in place? Stable? Running time = ?
- Have we used this before?

Example

Example

Insertion Sort Characteristics

- In place and Stable
- Running time
, Worst case is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- reverse order input
- must copy every element every time
- Good sorting algorithm for almost sorted data
, Each item is close to where it belongs in sorted order.

Inversions

- An inversion is a pair of elements in wrong order

$$
>\mathrm{i}<\mathrm{j} \text { but } A[i]>A[j]
$$

- By definition, a sorted array has no inversions
- So you can think of sorting as the process of removing inversions in the order of the elements

Inversions

- A single value out of place can cause several inversions

Reverse order

- All values out of place (reverse order) causes numerous inversions

Inversions

- Our simple sorting algorithms so far swap adjacent elements (explicitly or implicitly) and remove just 1 inversion at a time
, Their running time is proportional to number of inversions in array
- Given N distinct keys, the maximum possible number of inversions is

$$
(n-1)+(n-2)+\ldots+1=\sum_{i=1}^{n-1} i=\frac{(n-1) n}{2}
$$

Inversions and Adjacent Swap

Sorts

- "Average" list will contain half the max number of inversions $=\frac{(n-1) n}{4}$
, So the average running time of Insertion sort is $\Theta\left(\mathrm{N}^{2}\right)$ (i.e, $\mathrm{O}\left(\mathrm{N}^{2}\right)$ is a tight bound)
- Any sorting algorithm that only swaps adjacent elements requires $\Omega\left(\mathrm{N}^{2}\right)$ time because each swap removes only one inversion (lower bound)

Heap Sort

- We use a Max-Heap
- Root node = A[1]
- Children of $A[i]=A[2 i], A[2 i+1]$
- Keep track of current size N (number of nodes)

Using Binary Heaps for Sorting

- Build a max-heap
- Do N DeleteMax operations and store each Max element as it comes out of the heap
- Data comes out in largest to smallest order
- Where can we put the elements as they are removed from the heap?

1 Removal = 1 Addition

- Every time we do a DeleteMax, the heap gets smaller by one node, and we have one more node to store
, Store the data at the end of the heap array
, Not "in the heap" but it is in the heap array

Repeated DeleteMax

5	2	4	6	7			
1	2	3	4	5	6	7	8
		$\mathrm{~N}=3$					

(6)
(7)
(4)
(2)
(6)

4	2	5	6	7			
1	2	3	4	5	6	7	8
		$\mathrm{~N}=2$					

Heap Sort is In-place

- After all the DeleteMaxs, the heap is gone but the array is full and is in sorted order

Heapsort: Analysis

- Running time
, time to build max-heap is $\mathrm{O}(\mathrm{N})$
, time for N DeleteMax operations is $\mathrm{NO}(\log \mathrm{N})$
, total time is $\mathbf{O}(\mathbf{N} \log \mathbf{N})$
- Can also show that running time is $\Omega(\mathrm{N} \log \mathrm{N})$ for some inputs,
, so worst case is $\Theta(\mathbf{N} \log \mathbf{N})$
, Average case running time is also $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- Heapsort is in-place but not stable (why?)

