Binary Heaps

CSE 373 Data Structures Lecture 11

Readings

- Reading
 - > Sections 6.1-6.4

Revisiting FindMin

- Application: Find the smallest (or highest priority) item quickly
 - Operating system needs to schedule jobs according to priority instead of FIFO
 - Event simulation (bank customers arriving and departing, ordered according to when the event happened)
 - Find student with highest grade, employee with highest salary etc.

Priority Queue ADT

- Priority Queue can efficiently do:
 - > FindMin (and DeleteMin)
 - > Insert
- What if we use...
 - Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
 - Binary Search Trees: What is the run time for Insert and FindMin?
 - Hash Tables: What is the run time for Insert and FindMin?

Less flexibility \rightarrow More speed

- Lists
 - > If sorted: FindMin is O(1) but Insert is O(N)
 - > If not sorted: Insert is O(1) but FindMin is O(N)
- Balanced Binary Search Trees (BSTs)
 - Insert is O(log N) and FindMin is O(log N)
- Hash Tables:
 - Insert O(1) but no hope for FindMin
- BSTs look good but...
 - > BSTs are efficient for all Finds, not just FindMin
 - We only need FindMin

Better than a speeding BST

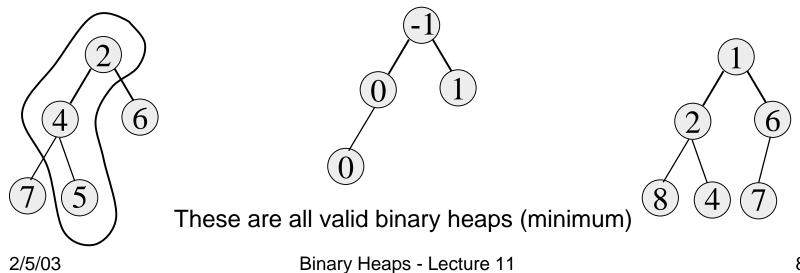
- We can do better than Balanced Binary Search Trees?
 - Very limited requirements: Insert, FindMin, DeleteMin. The goals are:
 - > FindMin is O(1)
 - Insert is O(log N)
 - DeleteMin is O(log N)

Binary Heaps

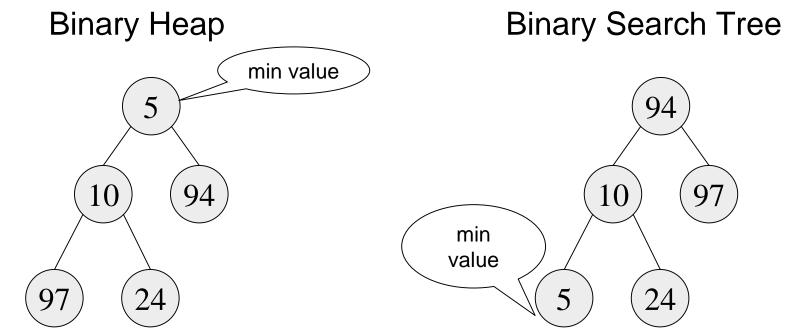
- A binary heap is a binary tree (NOT a BST) that is:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - > Satisfies the heap order property
 - every node is less than or equal to its children
 - or every node is greater than or equal to its children
- The root node is always the smallest node
 - > or the largest, depending on the heap order

Heap order property

- A heap provides limited ordering information
- Each *path* is sorted, but the subtrees are not sorted relative to each other
 - > A binary heap is NOT a binary search tree



Binary Heap vs Binary Search Tree

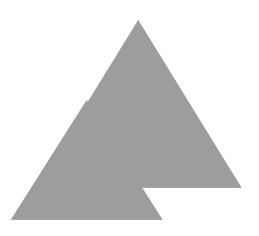


Parent is less than both left and right children

Parent is greater than left child, less than right child

Structure property

- A binary heap is a complete tree
 - All nodes are in use except for possibly the right end of the bottom row

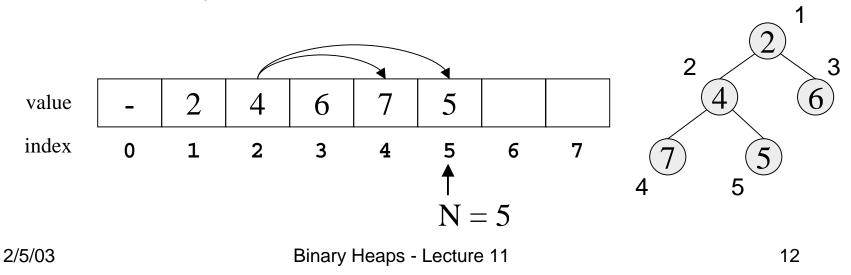


Examples



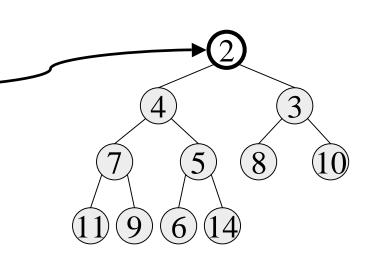
Array Implementation of Heaps (Implicit Pointers)

- Root node = A[1]
- Children of A[i] = A[2i], A[2i + 1]
- Keep track of current size N (number of nodes)



FindMin and DeleteMin

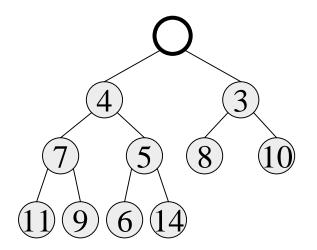
- FindMin: Easy!
 - Return root value A[1]
 - > Run time = ?



- DeleteMin:
 - Delete (and return) value at root node

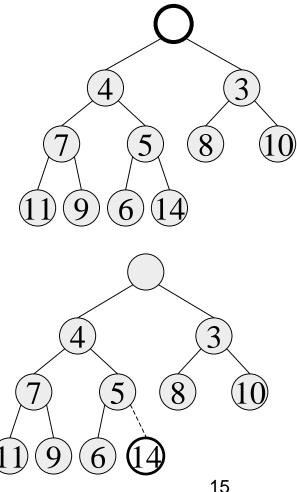
DeleteMin

 Delete (and return) value at root node



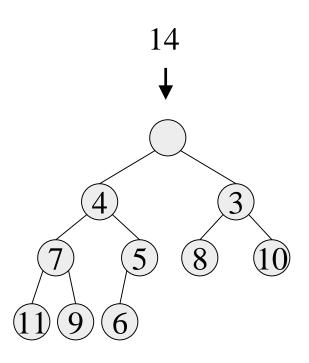
Maintain the Structure <u>Property</u>

- We now have a "Hole" at the root
 - Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete

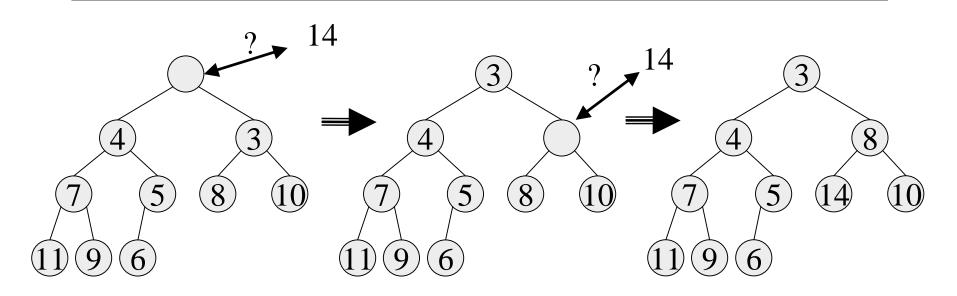


Maintain the Heap Property

- The last value has lost its node
 - we need to find a new place for it
- We can do a simple insertion sort operation to find the correct place for it in the tree



DeleteMin: Percolate Down



- Keep comparing with children A[2i] and A[2i + 1]
- Copy smaller child up and go down one level
- Done if both children are \geq item or reached a leaf node
- What is the run time?

Percolate Down

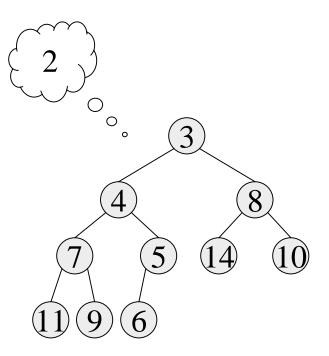
```
PercDown(i:integer, x :integer): {
   // N is the number of entries in heap//
   j : integer;
   Case{
     2i > N : A[i] := x; //at bottom//
      2i = N : if A[2i] < x then
                  A[i] := A[2i]; A[2i] := x;
               else A[i] := x;
      2i < N : if A[2i] < A[2i+1] then j := 2i;
               else j := 2i+1;
               if A[j] < x then
                  A[i] := A[j]; PercDown(j,x);
               else A[i] := x;
    } }
2/5/03
                   Binary Heaps - Lecture 11
```

DeleteMin: Run Time Analysis

- Run time is O(depth of heap)
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 - depth = $\lfloor \log_2(N) \rfloor$
- Run time of DeleteMin is O(log N)

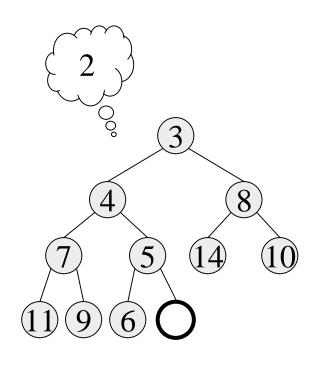
Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done



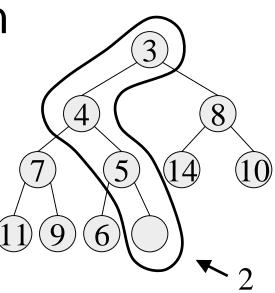
Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly

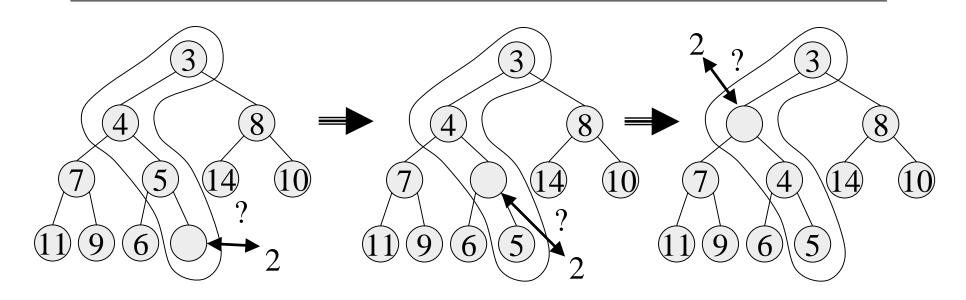


Maintain the Heap Property

- The new value goes where?
- We can do a simple insertion sort operation to find the correct place for it in the tree

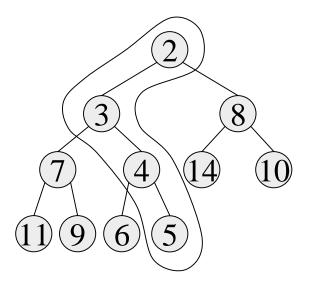


Insert: Percolate Up



- Start at last node and keep comparing with parent A[i/2]
- If parent larger, copy parent down and go up one level
- Done if parent ≤ item or reached top node A[1]
- Run time?

Insert: Done



• Run time?

PercUp

- Define PercUp which percolates new entry to correct spot.
- Note: the parent of i is i/2

```
PercUp(i : integer, x : integer): {
????
}
```

Sentinel Values

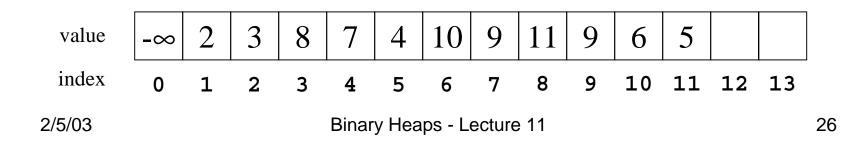
Every iteration of Insert needs to test:

if it has reached the top node A[1]
if parent ≤ item

Can avoid first test if A[0] contains a very large negative value

sentinel -∞ < item, for all items

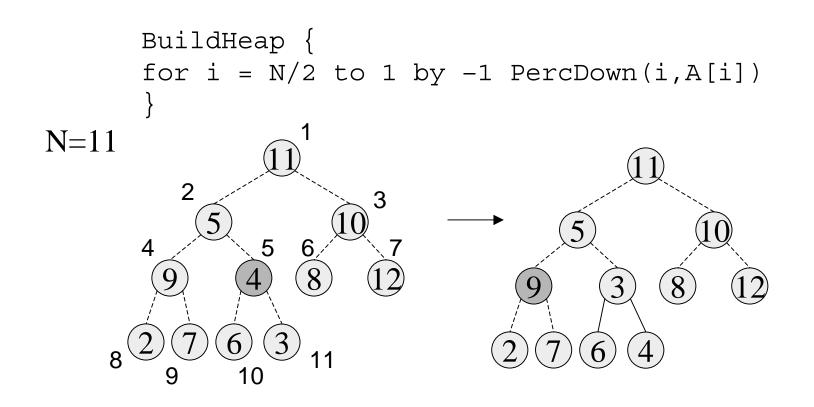
Second test alone always stops at top



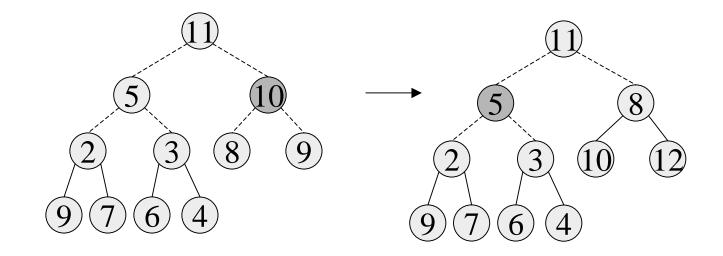
Binary Heap Analysis

- Space needed for heap of N nodes: O(MaxN)
 - An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel
- Time
 - > FindMin: O(1)
 - DeleteMin and Insert: O(log N)
 - > BuildHeap from N inputs : O(N)

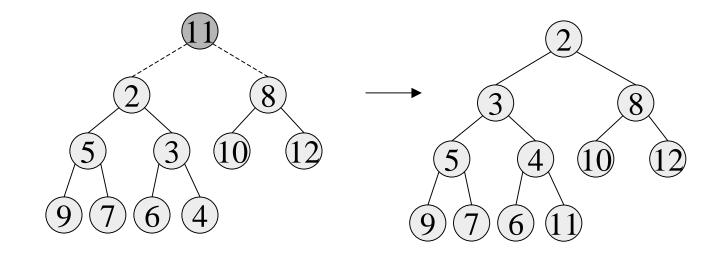
Build Heap



Build Heap



Build Heap



Analysis of Build Heap

- Assume $N = 2^{K} 1$
 - > Level 1: k -1 steps for 1 item
 - > Level 2: k 2 steps of 2 items
 - > Level 3: k 3 steps for 4 items
 - > Level i : k i steps for 2ⁱ⁻¹ items

Total Steps =
$$\sum_{i=1}^{k-1} (k-i) 2^{i-1} = 2^k - k - 1$$

= O(N)

- Find(X, H): Find the element X in heap H of N elements
 - > What is the running time? O(N)
- FindMax(H): Find the maximum element in H
- Where FIndMin is O(1)
 - > What is the running time? O(N)
- We sacrificed performance of these operations in order to get O(1) performance for FindMin

- DecreaseKey(P,Δ,H): Decrease the key value of node at position P by a positive amount Δ, e.g., to increase priority
 - > First, subtract Δ from current value at P
 - > Heap order property may be violated
 - > so percolate up to fix
 - > Running Time: O(log N)

- IncreaseKey(P,Δ,H): Increase the key value of node at position P by a positive amount Δ, e.g., to decrease priority
 - > First, add Δ to current value at P
 - > Heap order property may be violated
 - > so percolate down to fix
 - > Running Time: O(log N)

- Delete(P,H): E.g. Delete a job waiting in queue that has been preemptively terminated by user
 - > Use DecreaseKey(P,∞,H) followed by DeleteMin
 - > Running Time: O(log N)

- Merge(H1,H2): Merge two heaps H1 and H2 of size O(N). H1 and H2 are stored in two arrays.
 - Can do O(N) Insert operations: O(N log N) time
 - Better: Copy H2 at the end of H1 and use BuildHeap. Running Time: O(N)

PercUp Solution