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Readings

• Reading 
› Chapter 5
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The Need for Speed

• Data structures we have looked at so far
› Use comparison operations to find items
› Need O(log N) time for Find and Insert

• In real world applications, N is typically 
between 100 and 100,000 (or more)
› log N is between 6.6 and 16.6

• Hash tables are an abstract data type 
designed for O(1) Find and Inserts
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Fewer Functions Faster

• compare lists and stacks
› by reducing the flexibility of what we are allowed to do, 

we can increase the performance of the remaining 
operations

› insert(L,X) into a list versus push(S,X) onto a stack

• compare trees and hash tables
› trees provide for known ordering of all elements
› hash tables just let you (quickly) find an element
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Limited Set of Hash 
Operations

• For many applications, a limited set of 
operations is all that is needed
› Insert, Find, and Delete
› Note that no ordering of elements is implied

• For example, a compiler needs to maintain 
information about the symbols in a program
› user defined
› language keywords
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Direct Address Tables

• Direct addressing using an array is very fast

• Assume
› keys are integers in the set U={0,1,…m-1}
› m is small
› no two elements have the same key

• Then just store each element at the array 
location array[key]
› search, insert, and delete are trivial
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Direct Access Table
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Direct Address 
Implementation

Delete(Table T, ElementType x)

T[key[x]] = NULL   //key[x] is an 
//integer

Insert(Table t, ElementType x)

T[key[x]] = x

Find(Table t, Key k)

return T[k]
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An Issue

• If most keys in U are used
› direct addressing can work very well (m small)

• The largest possible key in U , say m, may be 
much larger than the number of elements 
actually stored (|U| much greater than |K|)
› the table is very sparse and wastes space
› in worst case, table too large to have in memory

• If most keys in U are not used
› need to map U to a smaller set closer in size to K
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Mapping the Keys
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Hashing Schemes

• We want to store N items in a table of 
size M, at a location computed from the 
key K

• Hash function
› Method for computing table index from key

• Need of a collision resolution strategy
› How to handle two keys that hash to the 

same index
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“Find”  an Element in an Array

• Data records can be stored in arrays.
› A[0] = {“CHEM 110”, Size 89}
› A[3] = {“CSE 142”, Size 251} 
› A[17] = {“CSE 373”, Size 85}

• Class size for CSE 373?
› Linear search the array – O(N) worst case 

time
› Binary search - O(log N) worst case

Key element
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Go Directly to the Element

• What if we could directly index into the 
array using the key?
› A[“CSE 373”] = {Size 85}

• Main idea behind hash tables
› Use a key based on some aspect of the 

data to index directly into an array

› O(1) time to access records
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Indexing into Hash Table

• Need a fast hash function to convert the element 
key (string or number) to an integer (the hash 
value)  (i.e, map from U to index)
› Then use this value to index into an array
› Hash(“CSE 373”) = 157, Hash(“CSE 143”) = 101

• Output of the hash function
› must always be less than size of array
› should be as evenly distributed as possible
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Choosing the Hash Function

• What properties do we want from a 
hash function?
› Want universe of hash values to be 

distributed randomly to minimize collisions
› Don’t want systematic nonrandom pattern 

in selection of keys to lead to systematic 
collisions

› Want hash value to depend on all values in 
entire key and their positions
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The Key Values are Important

• Notice that one issue with all the hash 
functions is that the actual content of 
the key set matters

• The elements in K (the keys that are 
used) are quite possibly a restricted 
subset of U, not just a random collection
› variable names, words in the English 

language, reserved keywords, telephone 
numbers, etc, etc
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Simple Hashes

• It's possible to have very simple hash 
functions if you are certain of your keys

• For example, 
› suppose we know that the keys s will be real 

numbers uniformly distributed over 0 ≤ s < 1
› Then a very fast, very good hash function is 

• hash(s) = floor(s·m)
• where m is the size of the table



2/3/03 Hashing - Lecture 10 18

Example of a Very Simple 
Mapping

• hash(s) = floor(s·m) maps from 0 ≤ s < 1 to 
0..m-1
› m = 10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 1 2 3 4 5 6 7 8 9

s

floor(s*m)

Note the even distribution.  There are collisions, but we will deal with them later.
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Perfect Hashing
• In some cases it's possible to map a known set 

of keys uniquely to a set of index values
• You must know every single key beforehand 

and be able to derive a function that works 
one-to-one

120 331 912 74 665 47 888 219

0 1 2 3 4 5 6 7 8 9

s

hash(s)
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Mod Hash Function

• One solution for a less constrained key set
› modular arithmetic 

• a mod size

› remainder when "a" is divided by "size"
› in C or Java this is written as r = a % size;
› If TableSize = 251

• 408 mod 251 = 157
• 352 mod 251 = 101
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Modulo Mapping

• a mod m maps from integers to 0..m-1
› one to one? no

› onto? yes

-4 -3 -2 -1 0 1 2 3 4 5 6 7

0 1 2 3 0 1 2 3 0 1 2 3

x

x mod 4
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Hashing Integers

• If keys are integers, we can use the hash 
function:
› Hash(key) = key mod TableSize

• Problem 1: What if TableSize is 11 and all 
keys are 2 repeated digits? (eg, 22, 33, …)
› all keys map to the same index
› Need to pick TableSize carefully: often, a prime 

number
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Nonnumerical Keys

• Many hash functions assume that the universe of 
keys is the natural numbers N={0,1,…}

• Need to find a function to convert the actual key 
to a natural number quickly and effectively before 
or during the hash calculation

• Generally work with the ASCII character codes 
when converting strings to numbers
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• If keys are strings can get an integer by adding up 
ASCII values of characters in key

• We are converting a very large string c0c1c2 … cn to 
a relatively small number c0+c1+c2+…+cn mod size.

Characters to Integers

67 83 69 32 51 55

C S E 3 7

ASCII value

character

51 0

3 <0>
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Hash Must be Onto Table

• Problem 2: What if TableSize is 10,000 
and all keys are 8 or less characters 
long?
› chars have values between 0 and 127

› Keys will hash only to positions 0 through 
8*127 = 1016

• Need to distribute keys over the entire 
table or the extra space is wasted
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Problems with Adding 
Characters

• Problems with adding up character values 
for string keys
› If string keys are short, will not hash 

evenly to all of the hash table
› Different character combinations hash to 

same value
• “abc”, “bca”, and “cab” all add up to the same 

value (recall this was Problem 1)
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Characters as Integers

• An character string can be thought of 
as a base 256 number. The string 
c1c2…cn can be thought of as the 
number 
cn + 256cn-1 + 2562cn-2 + … + 256n-1 c1

• Use Horner’s Rule to Hash!
r= 0;
for i = 1 to n do
r := (c[i] + 256*r) mod TableSize
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Collisions

• A collision occurs when two different 
keys hash to the same value
› E.g. For TableSize = 17, the keys 18 and 

35 hash to the same value for the mod17 
hash function

› 18 mod 17 = 1 and 35 mod 17 = 1

• Cannot store both data records in the 
same slot in array!
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Collision Resolution

• Separate Chaining
› Use data structure (such as a linked list) to 

store multiple items that hash to the same 
slot

• Open addressing (or probing)
› search for empty slots using a second 

function and store item in first empty slot 
that is found
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Resolution by Chaining

• Each hash table cell holds 
pointer to linked list of records 
with same hash value 

• Collision: Insert item into linked 
list

• To Find an item: compute hash 
value, then do Find on linked 
list

• Note that there are potentially 
as many as TableSize lists

0
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bug

zurg

hoppi
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Why Lists?

• Can use List ADT for Find/Insert/Delete in 
linked list
› O(N) runtime where N is the number of elements 

in the particular chain

• Can also use Binary Search Trees
› O(log N) time instead of O(N)
› But the number of elements to search through 

should be small (otherwise the hashing function is 
bad or the table is too small)

› generally not worth the overhead of BSTs
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Load Factor of a Hash Table

• Let N = number of items to be stored
• Load factor λ = N/TableSize

› TableSize = 101 and N =505, then λ = 5
› TableSize = 101 and N = 10, then λ = 0.1

• Average length of chained list = λ and so 
average time for accessing an item = O(1) + 
O(λ)
› Want λ to be smaller than 1 but close to 1 if good 

hashing function (i.e. TableSize ≈ N)
› With chaining hashing continues to work for λ > 1 
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Resolution by Open Addressing

• No links, all keys are in the table
› reduced overhead saves space

• When searching for X, check locations 
h1(X), h2(X), h3(X), … until either
› X is found; or
› we find an empty location (X not present)

• Various flavors of open addressing 
differ in which probe sequence they use
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Cell Full?  Keep Looking.

• hi(X)=(Hash(X)+F(i)) mod TableSize

› Define F(0) = 0

• F is the collision resolution function. 
Some possibilities:
› Linear: F(i) = i 

› Quadratic: F(i) = i2

› Double Hashing: F(i) = i·Hash2(X)
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Linear Probing
• When searching for K, check locations h(K), 
h(K)+1, h(K)+2, … mod TableSize until 
either
› K is found; or
› we find an empty location (K not present)

• If table is very sparse, almost like separate 
chaining.

• When table starts filling, we get clustering but 
still constant average search time.

• Full table ⇒ infinite loop. 
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Primary Clustering Problem

• Once a block of a few contiguous occupied 
positions emerges in table, it becomes a 
“target” for subsequent collisions

• As clusters grow, they also merge to form 
larger clusters.

• Primary clustering: elements that hash to 
different cells probe same alternative cells
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Quadratic Probing

• When searching for X, check locations 
h1(X), h1(X)+ 1

2, h1(X)+2
2,… mod 

TableSize until either
› X is found; or
› we find an empty location (X not present)

• No primary clustering but secondary 
clustering possible
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Double Hashing

• When searching for X, check locations h1(X), 
h1(X)+ h2(X),h1(X)+2*h2(X),… mod Tablesize

until either
› X is found; or
› we find an empty location (X not present)

• Must be careful about h2(X)
› Not 0 and not a divisor of M

› eg, h1(k) = k mod m1, h2(k)=1+(k mod m2)
where m2 is slightly less than m1
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Rules of Thumb

• Separate chaining is simple but wastes space… 
• Linear probing uses space better, is fast when 

tables are sparse
• Double hashing is space efficient, fast (get initial 

hash and increment at the same time), needs 
careful implementation

• For average cost (i.e., number of comparisons) 
of about t 
› Max load for Linear Probing is
› Max load for Double Hashing is

t1/1−

1/t1−
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Rehashing – Rebuild the Table

• Need to use lazy deletion if we use probing 
(why?)
› Need to mark array slots as deleted after Delete
› consequently, deleting doesn’t make the table any 

less full than it was before the delete

• If table gets too full (λ ≈ 1) or if many 
deletions have occurred, running time gets 
too long and Inserts may fail
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Rehashing
• Build a bigger hash table of approximately twice the size 

when λ exceeds a particular value

› Go through old hash table, ignoring items marked 
deleted

› Recompute hash value for each non-deleted key and 
put the item in new position in new table

› Cannot just copy data from old table because the 
bigger table has a new hash function

• Running time is O(N) but happens very infrequently
› Not good for real-time safety critical applications
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Rehashing Example

• Open hashing – h1(x) = x mod 5 rehashes to 
h2(x) = x mod 11.

0    1    2     3     4

25 37   83
52   98

λ = 1

0    1    2     3     4    5     6    7     8    9     10

25 37         83         52         98
λ = 5/11
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Caveats

• Hash functions are very often the cause 
of performance bugs.

• Hash functions often make the code not 
portable.

• If a particular hash function behaves 
badly on your data, then pick another.

• Always check where the time goes 


