
Hashing

CSE 373
Data Structures

Lecture 10

2/3/03 Hashing - Lecture 10 2

Readings

• Reading
› Chapter 5

2/3/03 Hashing - Lecture 10 3

The Need for Speed

• Data structures we have looked at so far
› Use comparison operations to find items
› Need O(log N) time for Find and Insert

• In real world applications, N is typically
between 100 and 100,000 (or more)
› log N is between 6.6 and 16.6

• Hash tables are an abstract data type
designed for O(1) Find and Inserts

2/3/03 Hashing - Lecture 10 4

Fewer Functions Faster

• compare lists and stacks
› by reducing the flexibility of what we are allowed to do,

we can increase the performance of the remaining
operations

› insert(L,X) into a list versus push(S,X) onto a stack

• compare trees and hash tables
› trees provide for known ordering of all elements
› hash tables just let you (quickly) find an element

2/3/03 Hashing - Lecture 10 5

Limited Set of Hash
Operations

• For many applications, a limited set of
operations is all that is needed
› Insert, Find, and Delete
› Note that no ordering of elements is implied

• For example, a compiler needs to maintain
information about the symbols in a program
› user defined
› language keywords

2/3/03 Hashing - Lecture 10 6

Direct Address Tables

• Direct addressing using an array is very fast

• Assume
› keys are integers in the set U={0,1,…m-1}
› m is small
› no two elements have the same key

• Then just store each element at the array
location array[key]
› search, insert, and delete are trivial

2/3/03 Hashing - Lecture 10 7

Direct Access Table

U
(universe of keys)

K
(Actual keys)

2

5 8

3

1

9
4

0
7

6

0

1

2

3

4

5

6

7

8

9

2

5

8

3

datakey

table

2/3/03 Hashing - Lecture 10 8

Direct Address
Implementation

Delete(Table T, ElementType x)

T[key[x]] = NULL //key[x] is an
//integer

Insert(Table t, ElementType x)

T[key[x]] = x

Find(Table t, Key k)

return T[k]

2/3/03 Hashing - Lecture 10 9

An Issue

• If most keys in U are used
› direct addressing can work very well (m small)

• The largest possible key in U , say m, may be
much larger than the number of elements
actually stored (|U| much greater than |K|)
› the table is very sparse and wastes space
› in worst case, table too large to have in memory

• If most keys in U are not used
› need to map U to a smaller set closer in size to K

2/3/03 Hashing - Lecture 10 10

Mapping the Keys
U

2

5 8

31

9

4
0

7
6

0

1

2

3

4

5

6

7

8

9

254

datakey

table254

54724 81

3456

103673

928104

432
0

72345

52

K

Hash Function
3456

54724

81

Key Universe

Table
indices

2/3/03 Hashing - Lecture 10 11

Hashing Schemes

• We want to store N items in a table of
size M, at a location computed from the
key K

• Hash function
› Method for computing table index from key

• Need of a collision resolution strategy
› How to handle two keys that hash to the

same index

2/3/03 Hashing - Lecture 10 12

“Find” an Element in an Array

• Data records can be stored in arrays.
› A[0] = {“CHEM 110”, Size 89}
› A[3] = {“CSE 142”, Size 251}
› A[17] = {“CSE 373”, Size 85}

• Class size for CSE 373?
› Linear search the array – O(N) worst case

time
› Binary search - O(log N) worst case

Key element

2/3/03 Hashing - Lecture 10 13

Go Directly to the Element

• What if we could directly index into the
array using the key?
› A[“CSE 373”] = {Size 85}

• Main idea behind hash tables
› Use a key based on some aspect of the

data to index directly into an array

› O(1) time to access records

2/3/03 Hashing - Lecture 10 14

Indexing into Hash Table

• Need a fast hash function to convert the element
key (string or number) to an integer (the hash
value) (i.e, map from U to index)
› Then use this value to index into an array
› Hash(“CSE 373”) = 157, Hash(“CSE 143”) = 101

• Output of the hash function
› must always be less than size of array
› should be as evenly distributed as possible

2/3/03 Hashing - Lecture 10 15

Choosing the Hash Function

• What properties do we want from a
hash function?
› Want universe of hash values to be

distributed randomly to minimize collisions
› Don’t want systematic nonrandom pattern

in selection of keys to lead to systematic
collisions

› Want hash value to depend on all values in
entire key and their positions

2/3/03 Hashing - Lecture 10 16

The Key Values are Important

• Notice that one issue with all the hash
functions is that the actual content of
the key set matters

• The elements in K (the keys that are
used) are quite possibly a restricted
subset of U, not just a random collection
› variable names, words in the English

language, reserved keywords, telephone
numbers, etc, etc

2/3/03 Hashing - Lecture 10 17

Simple Hashes

• It's possible to have very simple hash
functions if you are certain of your keys

• For example,
› suppose we know that the keys s will be real

numbers uniformly distributed over 0 ≤ s < 1
› Then a very fast, very good hash function is

• hash(s) = floor(s·m)
• where m is the size of the table

2/3/03 Hashing - Lecture 10 18

Example of a Very Simple
Mapping

• hash(s) = floor(s·m) maps from 0 ≤ s < 1 to
0..m-1
› m = 10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 1 2 3 4 5 6 7 8 9

s

floor(s*m)

Note the even distribution. There are collisions, but we will deal with them later.

2/3/03 Hashing - Lecture 10 19

Perfect Hashing
• In some cases it's possible to map a known set

of keys uniquely to a set of index values
• You must know every single key beforehand

and be able to derive a function that works
one-to-one

120 331 912 74 665 47 888 219

0 1 2 3 4 5 6 7 8 9

s

hash(s)

2/3/03 Hashing - Lecture 10 20

Mod Hash Function

• One solution for a less constrained key set
› modular arithmetic

• a mod size

› remainder when "a" is divided by "size"
› in C or Java this is written as r = a % size;
› If TableSize = 251

• 408 mod 251 = 157
• 352 mod 251 = 101

2/3/03 Hashing - Lecture 10 21

Modulo Mapping

• a mod m maps from integers to 0..m-1
› one to one? no

› onto? yes

-4 -3 -2 -1 0 1 2 3 4 5 6 7

0 1 2 3 0 1 2 3 0 1 2 3

x

x mod 4

2/3/03 Hashing - Lecture 10 22

Hashing Integers

• If keys are integers, we can use the hash
function:
› Hash(key) = key mod TableSize

• Problem 1: What if TableSize is 11 and all
keys are 2 repeated digits? (eg, 22, 33, …)
› all keys map to the same index
› Need to pick TableSize carefully: often, a prime

number

2/3/03 Hashing - Lecture 10 23

Nonnumerical Keys

• Many hash functions assume that the universe of
keys is the natural numbers N={0,1,…}

• Need to find a function to convert the actual key
to a natural number quickly and effectively before
or during the hash calculation

• Generally work with the ASCII character codes
when converting strings to numbers

2/3/03 Hashing - Lecture 10 24

• If keys are strings can get an integer by adding up
ASCII values of characters in key

• We are converting a very large string c0c1c2 … cn to
a relatively small number c0+c1+c2+…+cn mod size.

Characters to Integers

67 83 69 32 51 55

C S E 3 7

ASCII value

character

51 0

3 <0>

2/3/03 Hashing - Lecture 10 25

Hash Must be Onto Table

• Problem 2: What if TableSize is 10,000
and all keys are 8 or less characters
long?
› chars have values between 0 and 127

› Keys will hash only to positions 0 through
8*127 = 1016

• Need to distribute keys over the entire
table or the extra space is wasted

2/3/03 Hashing - Lecture 10 26

Problems with Adding
Characters

• Problems with adding up character values
for string keys
› If string keys are short, will not hash

evenly to all of the hash table
› Different character combinations hash to

same value
• “abc”, “bca”, and “cab” all add up to the same

value (recall this was Problem 1)

2/3/03 Hashing - Lecture 10 27

Characters as Integers

• An character string can be thought of
as a base 256 number. The string
c1c2…cn can be thought of as the
number
cn + 256cn-1 + 2562cn-2 + … + 256n-1 c1

• Use Horner’s Rule to Hash!
r= 0;
for i = 1 to n do
r := (c[i] + 256*r) mod TableSize

2/3/03 Hashing - Lecture 10 28

Collisions

• A collision occurs when two different
keys hash to the same value
› E.g. For TableSize = 17, the keys 18 and

35 hash to the same value for the mod17
hash function

› 18 mod 17 = 1 and 35 mod 17 = 1

• Cannot store both data records in the
same slot in array!

2/3/03 Hashing - Lecture 10 29

Collision Resolution

• Separate Chaining
› Use data structure (such as a linked list) to

store multiple items that hash to the same
slot

• Open addressing (or probing)
› search for empty slots using a second

function and store item in first empty slot
that is found

2/3/03 Hashing - Lecture 10 30

Resolution by Chaining

• Each hash table cell holds
pointer to linked list of records
with same hash value

• Collision: Insert item into linked
list

• To Find an item: compute hash
value, then do Find on linked
list

• Note that there are potentially
as many as TableSize lists

0

1

2

3

4

5

6

7

bug

zurg

hoppi

2/3/03 Hashing - Lecture 10 31

Why Lists?

• Can use List ADT for Find/Insert/Delete in
linked list
› O(N) runtime where N is the number of elements

in the particular chain

• Can also use Binary Search Trees
› O(log N) time instead of O(N)
› But the number of elements to search through

should be small (otherwise the hashing function is
bad or the table is too small)

› generally not worth the overhead of BSTs

2/3/03 Hashing - Lecture 10 32

Load Factor of a Hash Table

• Let N = number of items to be stored
• Load factor λ = N/TableSize

› TableSize = 101 and N =505, then λ = 5
› TableSize = 101 and N = 10, then λ = 0.1

• Average length of chained list = λ and so
average time for accessing an item = O(1) +
O(λ)
› Want λ to be smaller than 1 but close to 1 if good

hashing function (i.e. TableSize ≈ N)
› With chaining hashing continues to work for λ > 1

2/3/03 Hashing - Lecture 10 33

Resolution by Open Addressing

• No links, all keys are in the table
› reduced overhead saves space

• When searching for X, check locations
h1(X), h2(X), h3(X), … until either
› X is found; or
› we find an empty location (X not present)

• Various flavors of open addressing
differ in which probe sequence they use

2/3/03 Hashing - Lecture 10 34

Cell Full? Keep Looking.

• hi(X)=(Hash(X)+F(i)) mod TableSize

› Define F(0) = 0

• F is the collision resolution function.
Some possibilities:
› Linear: F(i) = i

› Quadratic: F(i) = i2

› Double Hashing: F(i) = i·Hash2(X)

2/3/03 Hashing - Lecture 10 35

Linear Probing
• When searching for K, check locations h(K),
h(K)+1, h(K)+2, … mod TableSize until
either
› K is found; or
› we find an empty location (K not present)

• If table is very sparse, almost like separate
chaining.

• When table starts filling, we get clustering but
still constant average search time.

• Full table ⇒ infinite loop.

2/3/03 Hashing - Lecture 10 36

Primary Clustering Problem

• Once a block of a few contiguous occupied
positions emerges in table, it becomes a
“target” for subsequent collisions

• As clusters grow, they also merge to form
larger clusters.

• Primary clustering: elements that hash to
different cells probe same alternative cells

2/3/03 Hashing - Lecture 10 37

Quadratic Probing

• When searching for X, check locations
h1(X), h1(X)+ 1

2, h1(X)+2
2,… mod

TableSize until either
› X is found; or
› we find an empty location (X not present)

• No primary clustering but secondary
clustering possible

2/3/03 Hashing - Lecture 10 38

Double Hashing

• When searching for X, check locations h1(X),
h1(X)+ h2(X),h1(X)+2*h2(X),… mod Tablesize

until either
› X is found; or
› we find an empty location (X not present)

• Must be careful about h2(X)
› Not 0 and not a divisor of M

› eg, h1(k) = k mod m1, h2(k)=1+(k mod m2)
where m2 is slightly less than m1

2/3/03 Hashing - Lecture 10 39

Rules of Thumb

• Separate chaining is simple but wastes space…
• Linear probing uses space better, is fast when

tables are sparse
• Double hashing is space efficient, fast (get initial

hash and increment at the same time), needs
careful implementation

• For average cost (i.e., number of comparisons)
of about t
› Max load for Linear Probing is
› Max load for Double Hashing is

t1/1−

1/t1−

2/3/03 Hashing - Lecture 10 40

Rehashing – Rebuild the Table

• Need to use lazy deletion if we use probing
(why?)
› Need to mark array slots as deleted after Delete
› consequently, deleting doesn’t make the table any

less full than it was before the delete

• If table gets too full (λ ≈ 1) or if many
deletions have occurred, running time gets
too long and Inserts may fail

2/3/03 Hashing - Lecture 10 41

Rehashing
• Build a bigger hash table of approximately twice the size

when λ exceeds a particular value

› Go through old hash table, ignoring items marked
deleted

› Recompute hash value for each non-deleted key and
put the item in new position in new table

› Cannot just copy data from old table because the
bigger table has a new hash function

• Running time is O(N) but happens very infrequently
› Not good for real-time safety critical applications

2/3/03 Hashing - Lecture 10 42

Rehashing Example

• Open hashing – h1(x) = x mod 5 rehashes to
h2(x) = x mod 11.

0 1 2 3 4

25 37 83
52 98

λ = 1

0 1 2 3 4 5 6 7 8 9 10

25 37 83 52 98
λ = 5/11

2/3/03 Hashing - Lecture 10 43

Caveats

• Hash functions are very often the cause
of performance bugs.

• Hash functions often make the code not
portable.

• If a particular hash function behaves
badly on your data, then pick another.

• Always check where the time goes

