
Splay Trees and B-Trees

CSE 373
Data Structures

Lecture 9

1/31/03 Splay Trees and B-Trees -
Lecture 9

2

Readings

• Reading
› Sections 4.5-4.7

1/31/03 Splay Trees and B-Trees -
Lecture 9

3

Self adjusting Trees

• Ordinary binary search trees have no balance
conditions
› what you get from insertion order is it

• Balanced trees like AVL trees enforce a
balance condition when nodes change
› tree is always balanced after an insert or delete

• Self-adjusting trees get reorganized over time
as nodes are accessed
› Tree adjusts after insert, delete, or find

1/31/03 Splay Trees and B-Trees -
Lecture 9

4

Splay Trees

• Splay trees are tree structures that:
› Are not perfectly balanced all the time
› Data most recently accessed is near the root.

(principle of locality; 80-20 “rule”)

• The procedure:
› After node X is accessed, perform “splaying”

operations to bring X to the root of the tree.
› Do this in a way that leaves the tree more

balanced as a whole

1/31/03 Splay Trees and B-Trees -
Lecture 9

5

• Let X be a non-root node with ≥ 2 ancestors.
• P is its parent node.
• G is its grandparent node.

P

G

X

G

P

X

G

P

X

G

P

X

Splay Tree Terminology

1/31/03 Splay Trees and B-Trees -
Lecture 9

6

Zig-Zig and Zig-Zag

4

G 5

1 P Zig-zag

G

P 5

X 2

Zig-zig

X

Parent and grandparent
in same direction.

Parent and grandparent
in different directions.

1/31/03 Splay Trees and B-Trees -
Lecture 9

7

1. Helpful if nodes contain a parent pointer.

2. When X is accessed, apply one of six rotation routines.
• Single Rotations (X has a P (the root) but no G)

ZigFromLeft, ZigFromRight

• Double Rotations (X has both a P and a G)
ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

Splay Tree Operations

parent

rightleft
element

1/31/03 Splay Trees and B-Trees -
Lecture 9

8

Zig at depth 1 (root)
• “Zig” is just a single rotation, as in an AVL tree
• Let R be the node that was accessed (e.g. using

Find)

• ZigFromLeft moves R to the top →faster access
next time

ZigFromLeft

root

1/31/03 Splay Trees and B-Trees -
Lecture 9

9

Zig at depth 1

• Suppose Q is now accessed using Find

• ZigFromRight moves Q back to the top

ZigFromRight

root

1/31/03 Splay Trees and B-Trees -
Lecture 9

10

Zig-Zag operation

• “Zig-Zag” consists of two rotations of the
opposite direction (assume R is the node that
was accessed)

(ZigFromRight) (ZigFromLeft)

ZigZagFromLeft

1/31/03 Splay Trees and B-Trees -
Lecture 9

11

Zig-Zig operation

• “Zig-Zig” consists of two single rotations
of the same direction (R is the node that
was accessed)

(ZigFromLeft) (ZigFromLeft)

ZigZigFromLeft

1/31/03 Splay Trees and B-Trees -
Lecture 9

12

Decreasing depth -
"autobalance"

Find(T) Find(R)

1/31/03 Splay Trees and B-Trees -
Lecture 9

13

Splay Tree Insert and Delete

• Insert x
› Insert x as normal then splay x to root.

• Delete x
› Splay x to root and remove it. (note: the node does

not have to be a leaf or single child node like in
BST delete.) Two trees remain, right subtree and
left subtree.

› Splay the max in the left subtree to the root
› Attach the right subtree to the new root of the left

subtree.

1/31/03 Splay Trees and B-Trees -
Lecture 9

14

Example Insert

• Inserting in order 1,2,3,…,8
• Without self-adjustment

1

2

3

4

5

6

7

8

O(n2) time for n Insert

1/31/03 Splay Trees and B-Trees -
Lecture 9

15

With Self-Adjustment

1

2

1 2

1

ZigFromRight

2

1 3

ZigFromRight
2

1

3

1

2

3

1/31/03 Splay Trees and B-Trees -
Lecture 9

16

With Self-Adjustment

ZigFromRight2

1

34
4

2

1

3

4

Each Insert takes O(1) time therefore O(n) time for n Insert!!

1/31/03 Splay Trees and B-Trees -
Lecture 9

17

Example Deletion
10

155

201382

96

10

15

5

2013

8

2 96

splay

10

15

5

2013

2 96

remove

10

15

5

2013

2 9

6
Splay (zig)

attach

(Zig-Zag)

1/31/03 Splay Trees and B-Trees -
Lecture 9

18

Analysis of Splay Trees

• Splay trees tend to be balanced
› M operations takes time O(M log N) for M > N

operations on N items. (proof is difficult)
› Amortized O(log n) time.

• Splay trees have good “locality” properties
› Recently accessed items are near the root of the

tree.
› Items near an accessed one are pulled toward the

root.

1/31/03 Splay Trees and B-Trees -
Lecture 9

19

• Example: B-tree of order 3 has 2 or 3
children per node

• Search for 8

Beyond Binary Search Trees:
Multi-Way Trees

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

1/31/03 Splay Trees and B-Trees -
Lecture 9

20

B-Trees are multi-way search trees commonly used in database
systems or other applications where data is stored externally on
disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:
1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between M/2

and M children.
3. All leaves are at the same depth.

All data records are stored at the leaves.
Internal nodes have “keys” guiding to the leaves.
Leaves store between M/2 and M data records.

B-Trees

1/31/03 Splay Trees and B-Trees -
Lecture 9

21

B-Tree Details

Each (non-leaf) internal node of a B-tree has:
› Between M/2 and M children.
› up to M-1 keys k1 < k2 < ... < kM-1

Keys are ordered so that:
k1 < k2 < ... < kM-1

kM-1. ki-1 kik1

1/31/03 Splay Trees and B-Trees -
Lecture 9

22

Properties of B-Trees

Children of each internal node are "between" the items in that node.
Suppose subtree Ti is the ith child of the node:

all keys in Ti must be between keys ki-1 and ki

i.e. ki-1 ≤ Ti < ki

ki-1 is the smallest key in Ti

All keys in first subtree T1 < k1

All keys in last subtree TM ≥ kM-1

k1

TTii

. kki-1 kkii

TTMTT11

kkM-1

.

1/31/03 Splay Trees and B-Trees -
Lecture 9

23

Example: Searching in B-trees

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

• B-tree of order 3: also known as 2-3 tree (2 to 3
children)

• Examples: Search for 9, 14, 12
• Note: If leaf nodes are connected as a Linked List, B-

tree is called a B+ tree – Allows sorted list to be
accessed easily

- means empty slot

1/31/03 Splay Trees and B-Trees -
Lecture 9

24

Inserting into B-Trees
• Insert X: Do a Find on X and find appropriate leaf node

› If leaf node is not full, fill in empty slot with X
• E.g. Insert 5

› If leaf node is full, split leaf node and adjust parents up to root
node

• E.g. Insert 9 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

1/31/03 Splay Trees and B-Trees -
Lecture 9

25

Deleting From B-Trees

• Delete X : Do a find and remove from leaf
› Leaf underflows – borrow from a neighbor

• E.g. 11

› Leaf underflows and can’t borrow – merge nodes, delete
parent

• E.g. 17 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

1/31/03 Splay Trees and B-Trees -
Lecture 9

26

Run Time Analysis of B-Tree
Operations

• For a B-Tree of order M
› Each internal node has up to M-1 keys to search

› Each internal node has between M/2 and M children
› Depth of B-Tree storing N items is O(log M/2 N)

• Find: Run time is:
› O(log M) to binary search which branch to take at each

node. But M is small compared to N.
› Total time to find an item is O(depth*log M) = O(log N)

1/31/03 Splay Trees and B-Trees -
Lecture 9

27

Summary of Search Trees

• Problem with Binary Search Trees: Must keep tree
balanced to allow fast access to stored items

• AVL trees: Insert/Delete operations keep tree balanced
• Splay trees: Repeated Find operations produce

balanced trees
• Multi-way search trees (e.g. B-Trees): More than two

children
› per node allows shallow trees; all leaves are at the

same depth
› keeping tree balanced at all times

