
AVL Trees (a few more slides)
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Data Structures

Lecture 8.5
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Insertion in AVL Trees

• Insert at the leaf (as for all BST)
› only nodes on the path from insertion point to 

root node have possibly changed in height
› So after the Insert, go back up to the root 

node by node, updating heights

› If a new balance factor (the difference hleft-
hright) is 2 or –2, adjust tree by rotation around 
the node
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Insert in BST

Insert(T : reference tree pointer, x : element) : integer {
if T = null then

T := new tree; T.data := x; return 1;//the links to           
//children are null

case
T.data = x : return 0; //Duplicate do nothing
T.data > x : return Insert(T.left, x);
T.data < x : return Insert(T.right, x);

endcase
}
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Insert in AVL trees

Insert(T : reference tree pointer, x : element) : {
if T = null then

T := new tree; T.data := x; height := 0;
case

T.data = x : return ; //Duplicate do nothing
T.data > x : return Insert(T.left, x);

if ((height(T.left)- height(T.right)) = 2){
if (T.left.data > x ) then //outside case

T = RotatefromLeft (T);
else                       //inside case

T = DoubleRotatefromLeft (T);}
T.data < x : return Insert(T.right, x);

code similar to the left case
Endcase

T.height := max(height(T.left),height(T.right)) +1;
return;

}
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Example of Insertions in an 
AVL Tree
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Example of Insertions in an 
AVL Tree
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Single rotation (outside case)
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Double rotation (inside case)
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Inserting into Y 
destroys the
AVL property
at node j 
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Consider the structure
of subtree Y… j
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We will do a left-right 
“double rotation” . . .
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Non-recursive insertion or the 
hacker’s delight

• Key observations;
› At most one rotation

› Balance factor: 2 bits are sufficient (-1 left, 
0 equal, +1 right)

› There is one node on the path of insertion, 
say S, that is “critical”. It is the node where 
a rotation can occur and nodes above it 
won’t have their balance factors modified
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Non-recursive insertion

• Step 1 (Insert and find S):
› Find the place of insertion and identify the last node S on the 

path whose BF � 0 (if all BF on the path = 0, S is the root).

› Insert

• Step 2 (Adjust BF’s)
› Restart from the child of S on the path of insertion. (note: all 

the nodes from that node on on the path of insertion have BF = 0.)If 
the path traversed was left (right) set BF to –1 (+1) and 
repeat until you reach a null link (at the place of insertion)
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Non-recursive insertion (ct’d)

• Step 3 (Balance if necessary):
› If BF(S) = 0 (S was the root) set BF(S) to the direction of 

insertion (the tree has become higher)
› If BF(S) = -1 (+1) and we traverse right (left) set BF(S) = 0   

(the tree has become more balanced)
› If BF(S) = -1 (+1) and we traverse left (right), the tree 

becomes unbalanced. Perform a single rotation or a double 
rotation depending on whether the path is left-left (right-right) 
or left-right (right-left)
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Non-recursive Insertion with 
BF’s
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