
AVL Trees (a few more slides)

CSE 373
Data Structures

Lecture 8.5

1/29/02 AVL Trees addendum - Lecture
8.5

2

Insertion in AVL Trees

• Insert at the leaf (as for all BST)
› only nodes on the path from insertion point to

root node have possibly changed in height
› So after the Insert, go back up to the root

node by node, updating heights

› If a new balance factor (the difference hleft-
hright) is 2 or –2, adjust tree by rotation around
the node

1/29/02 AVL Trees addendum - Lecture
8.5

3

Insert in BST

Insert(T : reference tree pointer, x : element) : integer {
if T = null then

T := new tree; T.data := x; return 1;//the links to
//children are null

case
T.data = x : return 0; //Duplicate do nothing
T.data > x : return Insert(T.left, x);
T.data < x : return Insert(T.right, x);

endcase
}

1/29/02 AVL Trees addendum - Lecture
8.5

4

Insert in AVL trees

Insert(T : reference tree pointer, x : element) : {
if T = null then

T := new tree; T.data := x; height := 0;
case

T.data = x : return ; //Duplicate do nothing
T.data > x : return Insert(T.left, x);

if ((height(T.left)- height(T.right)) = 2){
if (T.left.data > x) then //outside case

T = RotatefromLeft (T);
else //inside case

T = DoubleRotatefromLeft (T);}
T.data < x : return Insert(T.right, x);

code similar to the left case
Endcase

T.height := max(height(T.left),height(T.right)) +1;
return;

}

1/29/02 AVL Trees addendum - Lecture
8.5

5

Example of Insertions in an
AVL Tree

1

0

2

20

10 30

25

0

35

0

Insert 5, 40

1/29/02 AVL Trees addendum - Lecture
8.5

6

Example of Insertions in an
AVL Tree

1

0

2

20

10 30

25

1

35

0

5
0

20

10 30

25

1

355

40

0

0

0
1

2

3

Now Insert 45

1/29/02 AVL Trees addendum - Lecture
8.5

7

Single rotation (outside case)

2

0

3

20

10 30

25

1

35

2

5
0

20

10 30

25

1

405

40

0

0

0

1

2

3

45

Imbalance
35 45

0 0

1

Now Insert 34

1/29/02 AVL Trees addendum - Lecture
8.5

8

Double rotation (inside case)

3

0

3

20

10 30

25

1

40

2

5
0

20

10 35

30

1

405

45

0 1

2

3

Imbalance

45

0

1

Insertion of 34

35

34

0

0

1 25 340

1/29/02 AVL Trees addendum - Lecture
8.5

9

j

k

X Y

Z

Consider a valid
AVL subtree

AVL Insertion: Outside Case

h

h
h

h+1

h+2

1/29/02 AVL Trees addendum - Lecture
8.5

10

j

k

X
Y

Z

Inserting into X
destroys the AVL
property at node j

(h+2) - h

AVL Insertion: Outside Case

h

h+1 h

Becomes
h + 2

1/29/02 AVL Trees addendum - Lecture
8.5

11

j

k

X Y Z

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!

h

h+1

h

h+1

h+2

1/29/02 AVL Trees addendum - Lecture
8.5

12

j

k

X Y

Z

Consider a valid
AVL subtree

AVL Insertion: Inside Case

h

h
h

h+1

h+2

1/29/02 AVL Trees addendum - Lecture
8.5

13

Inserting into Y
destroys the
AVL property
at node j

j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

Becomes
h + 2

1/29/02 AVL Trees addendum - Lecture
8.5

14

Consider the structure
of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

1/29/02 AVL Trees addendum - Lecture
8.5

15

j

k

X
V

Z

W

i

Y = node i and
subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1

h+2

1/29/02 AVL Trees addendum - Lecture
8.5

16

j

k

X
V

Z

W

i

AVL Insertion: Inside Case

We will do a left-right
“double rotation” . . .

1/29/02 AVL Trees addendum - Lecture
8.5

17

jk

X V ZW

i

Double rotation : second
rotation

double rotation complete

Balance has been
restored

hh h or h-1

h+1
h+1

h+2

1/29/02 AVL Trees addendum - Lecture
8.5

18

Non-recursive insertion or the
hacker’s delight

• Key observations;
› At most one rotation

› Balance factor: 2 bits are sufficient (-1 left,
0 equal, +1 right)

› There is one node on the path of insertion,
say S, that is “critical”. It is the node where
a rotation can occur and nodes above it
won’t have their balance factors modified

1/29/02 AVL Trees addendum - Lecture
8.5

19

Non-recursive insertion

• Step 1 (Insert and find S):
› Find the place of insertion and identify the last node S on the

path whose BF � 0 (if all BF on the path = 0, S is the root).

› Insert

• Step 2 (Adjust BF’s)
› Restart from the child of S on the path of insertion. (note: all

the nodes from that node on on the path of insertion have BF = 0.)If
the path traversed was left (right) set BF to –1 (+1) and
repeat until you reach a null link (at the place of insertion)

1/29/02 AVL Trees addendum - Lecture
8.5

20

Non-recursive insertion (ct’d)

• Step 3 (Balance if necessary):
› If BF(S) = 0 (S was the root) set BF(S) to the direction of

insertion (the tree has become higher)
› If BF(S) = -1 (+1) and we traverse right (left) set BF(S) = 0

(the tree has become more balanced)
› If BF(S) = -1 (+1) and we traverse left (right), the tree

becomes unbalanced. Perform a single rotation or a double
rotation depending on whether the path is left-left (right-right)
or left-right (right-left)

1/29/02 AVL Trees addendum - Lecture
8.5

21

Non-recursive Insertion with
BF’s

+1

0

+1

20

10 30

25

-1

40

0 ->1

5
0

20

10 35

30

-1

405

45

0 0

0

+1

45

0

1

Insertion of 34
35

34

00->-1 25 340

Step 1 & 2

S

0

0

Step 3

