
CSE 373 Winter 2003

Data Structures and Algorithms

Programming Assignment #2

Due: Friday February 21st

In this programming assignment, you will have to build a “mini-database” and give a user the capability
of performing some simple queries.

The most common databases are so-called relational databases which are sets of records. Our database
will be a class list with each record corresponding to a student enrolled in the class. Enrollment is
limited by Classsize = 100. Each record has several fields called attributes. The records we will use
will have 3 attributes:

StudentNumber LastName Grade

Attributes can be unique or non-unique. In our case, StudentNumber, an integer with 4 digits, is
unique, i.e., no two students have the same number. The first digit of Student number indicates the
academic age of the student, with 1 for Freshman, 2 for Sophomore, 3 for Junior, 4 for Senior and 8
for Graduate student.

On the other hand Grade, which will be an integer between 0 and 40, is non-unique since several
students can have the same grade.

Finally, LastName in real life is not unique but will be unique for this assignment. LastName will be
between 2 and 8 characters.

To provide rapid access to data, database systems use indexes. Each index allows the database to be
searched (efficiently) on a selected attribute called the key of that index. In our example, Student-
Number is the primary key, because it is unique, but indexes can also be built with other keys, unique
or not, when fast access on those keys is desired.

In this assignment you will need to build the database and query it subsequently using 3 indexes (recall
that the db has a maximum of 100 records):

• A binary search tree (BST) for StudentNumber (the BST need not be balanced), called bstnum.

• A hash table using linear probing for LastName, called tbname; Indicate in the README file,
the size of the table and the hash function you used.

• A binary heap for Grade with the maximum value being at the root of the heap, named heapgr.

The first part of the assignment is to Build the database and the 3 indexes. The database will be
given in the file db.txt with one record per line. Each record will have an integer (for StudentNumber),
a string (for LastName), and another integer (for Grade) and a carriage return to end the line. For
example, the first two lines of db.txt could be:
1234 JOE 35
4321 MARY 38
Once read in from db.txt the database should be stored in an Array of records, say db (Note, as said

1



earlier, that the array is limited to 100 entries). If the program were written in pseudocode, we could
say something like:

db[0..99] : record array; //record has 3 fields

...

...if db[i].StudentNumber = 1234 then

...

Also, in the example above, JOE corresponds to the LastName field of db[0] and MARY corresponds
to the LastName field of db[1]. (Tian will post programs in Java and C++ doing the kind of I/O that
you will require.)

Once the array has been created, or while creating it (this is your choice), you should build the 3 indexes
mentioned above. An entry in each of the indexes should have a field referring to the corresponding
entry in the Array. For example, the unique node in bstnum with value “4321” should have a field
indicating that the remainder of the record is stored in db[1].

After building the indexes, you should write methods to answer the following queries:

• List (by name) the students of academic age x (x = 1 or 2 or ...8) You should use the bstnum

index for this method.

• List (by name) the students with the highest grade You should use the heapgr index for this
method.

• What is the grade of Student xyz (you should also check that Student xyz is in the class roster).
You should use the tbname index for this method.

• Any other interesting query you wish. This will count as a bonus and will be judged on correctness
and difficulty.

These queries should be menu driven, i.e., once the database and indexes have been built, a menu of
queries should appear on the screen and the user should be able to select one of the above queries as
well as having the possibility to quit. (An example of such an interface can be found in the menu.java
method of CSE 142 Autumn 2002 Homework 3.)

In addition to YOUR SUPERBLY DOCUMENTED PROGRAMS, you should include a README
file indicating how to compile and run your program and whether we should be aware of something
out of the ordinary.

(1) The main method must be in Dbq.java or Dbq.cpp.
(2) We will run your program only in command line:
java Dbq db.txt (or for C++: Dbq db.txt)

In summary, your program should build a database based on db.txt, build the 3 indexes, and then
display a menu with the three required options and any additional query you wish.

You can use either Java or C++. You can use any source code given on the Web sites of the book (see
CSE 373 “For more info” page). For additional information on java, the following link will be useful:
http://java.sun.com/j2se/1.4.1/docs/api/

Instructions for Turn-in will be given later.

2


