Sorting

CSE 373

Data Structures
Lecture 19

Reading

- Reading
, Sections 7.1-7.3 and 7.5
, Section 7.6, Mergesort
, Section 7.7, Quicksort

Sorting

- Input
, an array A of data records (Note: we have seen how to sort when elements are in linked lists: Mergesort)
, a key value in each data record
, a comparison function which imposes a consistent ordering on the keys (e.g., integers)
- Output
, reorganize the elements of A such that
- For any i and j, if $i<j$ then $A[i] \leq A[j]$

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
, Is copying needed? O(n) additional space
, In-place sorting - no copying - O(1) additional space
, Somewhere in between for "temporary", e.g. O(logn) space
, External memory sorting - data so large that does not fit in memory

Time

- How fast is the algorithm?
, The definition of a sorted array A says that for any $i<j, A[i]<A[j]$
, This means that you need to at least check on each element at the very minimum, l.e., at least $\mathrm{O}(\mathrm{N})$
, And you could end up checking each element against every other element, which is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
, The big question is: How close to $\mathrm{O}(\mathrm{N})$ can you get?

Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
, E.g. Phone book sorted by name. Now sort by county - is the list still sorted by name within each county?
, Extremely important property for databases
, A stable sorting algorithm is one which does not rearrange the order of duplicate keys

Bubble Sort

- "Bubble" elements to to their proper place in the array by comparing elements i and $\mathrm{i}+1$, and swapping if $A[i]>A[i+1]$
, Bubble every element towards its correct position
- last position has the largest element
- then bubble every element except the last one towards its correct position
- then repeat until done or until the end of the quarter, whichever comes first ...

Bubblesort

```
bubble(A[1..n]: integer array, n : integer): {
    i, j : integer;
    for i = 1 to n-1 do
        for j = 2 to n-i+1 do
        if A[j-1] > A[j] then SWAP(A[j-1],A[j]);
    }
SWAP (a,b) : {
    t :integer;
    t:=a; a:=b; b:=t;
}
```


Put the largest element in its place

Put $2^{\text {nd }}$ largest element in its place

larger value?

Two elements done, only n-2 more to go ...

Bubble Sort: Just Say No

- "Bubble" elements to to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i]>A[i+1]$
- We bubblize for $\mathrm{i}=1$ to n (i.e, n times)
- Each bubblization is a loop that makes n-i comparisons
- This is $O\left(n^{2}\right)$

Insertion Sort

- What if first k elements of array are already sorted?

$$
>4,7,12,5,19,16
$$

- We can shift the tail of the sorted elements list down and then insert next element into proper position and we get k+1 sorted elements
, $4,5,7,12,19,16$

Insertion Sort

```
InsertionSort(A[1..N]: integer array, N: integer) \{
    i, j, temp: integer ;
    for \(i=2\) to \(N\) \{
        temp :=A[i];
        j : = i-1;
        while \(j>1\) and \(A[j-1]>\) temp \(\{\)
            \(A[j]:=A[j-1] ; j:=j-1 ;\}\)
        \(A[j]=\) temp;
    \}
\}
- Is Insertion sort in place?
- Running time = ?
```


Example

Example

Insertion Sort Characteristics

- In place and Stable
- Running time
, Worst case is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- reverse order input
- must copy every element every time
- Good sorting algorithm for almost sorted data
, Each item is close to where it belongs in sorted order.

Heap Sort

- We use a Max-Heap
- Root node = A[1]
- Children of $A[i]=A[2 i], A[2 i+1]$
- Keep track of current size N (number of nodes)

Using Binary Heaps for Sorting

- Build a max-heap
- Do N DeleteMax operations and store each Max element as it comes out of the heap
- Data comes out in largest to smallest order
- Where can we put the elements as they are removed from the heap?

1 Removal = 1 Addition

- Every time we do a DeleteMax, the heap gets smaller by one node, and we have one more node to store
, Store the data at the end of the heap array
, Not "in the heap" but it is in the heap array

Repeated DeleteMax

5	2	4	6	7			
1	2	3	4	5	6	7	8
		$\mathrm{~N}=3$					

(6)
(7)

$N=2$

Heap Sort is In-place

- After all the DeleteMaxs, the heap is gone but the array is full and is in sorted order

Heapsort: Analysis

- Running time
, time to build max-heap is $\mathrm{O}(\mathrm{N})$
, time for N DeleteMax operations is $\mathrm{NO}(\log \mathrm{N})$
, total time is $\mathbf{O}(\mathbf{N} \log \mathbf{N})$
- Can also show that running time is $\Omega(\mathrm{N} \log \mathrm{N})$ for some inputs,
, so worst case is $\Theta(\mathbf{N} \log \mathbf{N})$
, Average case running time is also $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- Heapsort is in-place but not stable (why?)

"Divide and Conquer"

- Very important strategy in computer science:
, Divide problem into smaller parts
, Independently solve the parts
, Combine these solutions to get overall solution
- Idea 1: Divide array into two halves, recursively sort left and right halves, then merge two halves \rightarrow Mergesort
- Idea 2 : Partition array into items that are "small" and items that are "large", then recursively sort the two sets \rightarrow Quicksort

Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together

Mergesort Example

Auxiliary Array

- The merging requires an auxiliary array.

Auxiliary array

Auxiliary Array

- The merging requires an auxiliary array.

Auxiliary array

Auxiliary Array

- The merging requires an auxiliary array.

Auxiliary array

Merging

normal

Left completed first

Merging

Right completed first

Merging Algorithm

```
Merge(A[], T[] : integer array, left, right : integer) : {
    mid, i, j, k, l, target : integer;
    mid := (right + left)/2;
    i := left; j := mid + l; target := left;
    while i s mid and j s right do
        if A[i] < A[j] then T[target] := A[i] ; i:= i + 1;
            else T[target] := A[j]; j := j + 1;
        target := target + 1;
    if i > mid then //left completed//
    for k := left to target-1 do A[k] := T[k];
    if j > right then //right completed//
    k : = mid; l := right;
    while k \geq i do A[l] := A[k]; k := k-1; l := l-1;
    for k := left to target-1 do A[k] := T[k];
}

\section*{Recursive Mergesort}
```

Mergesort(A[], T[] : integer array, left, right : integer) : {
if left < right then
mid := (left + right)/2;
Mergesort(A,T,left,mid);
Mergesort(A,T,mid+1,right);
Merge(A,T,left,right);
}
MainMergesort(A[1..n]: integer array, n : integer) : {
T[1..n]: integer array;
Mergesort[A,T,1,n] ;
}

```

\section*{Iterative Mergesort}


Merge by 1
Merge by 2
Merge by 4
Merge by 8

\section*{Iterative Mergesort}


\section*{Iterative Mergesort}
```

IterativeMergesort(A[1..n]: integer array, n : integer) : {
//precondition: n is a power of 2//
i, m, parity : integer;
T[1..n]: integer array;
m := 2; parity := 0;
while m \leq n do
for i = 1 to n - m + 1 by m do
if parity = 0 then Merge(A,T,i,i+m-1);
else Merge(T,A,i,i+m-1);
parity := 1 - parity;
m := 2*m;
if parity = 1 then
for i = 1 to n do A[i] := T[i];
}

```

How do you handle non-powers of 2? How can the final copy be avoided?

\section*{Mergesort Analysis}
- Let \(\mathrm{T}(\mathrm{N})\) be the running time for an array of N elements
- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
- Each recursive call takes \(\mathrm{T}(\mathrm{N} / 2)\) and merging takes \(\mathrm{O}(\mathrm{N})\)

\section*{Mergesort Recurrence Relation}
- The recurrence relation for \(\mathrm{T}(\mathrm{N})\) is:
, \(\mathrm{T}(1) \leq \mathrm{a}\)
- base case: 1 element array \(\rightarrow\) constant time
, \(\mathrm{T}(\mathrm{N}) \leq 2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{bN}\)
- Sorting N elements takes
- the time to sort the left half
- plus the time to sort the right half
- plus an \(\mathrm{O}(\mathrm{N})\) time to merge the two halves
- \(\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{n} \log \mathrm{n})\)

\section*{Properties of Mergesort}
- Not in-place
, Requires an auxiliary array (O(n) extra space)
- Stable
, Make sure that left is sent to target on equal values.
- Iterative Mergesort reduces copying.

\section*{Quicksort}
- Quicksort uses a divide and conquer strategy, but does not require the \(\mathrm{O}(\mathrm{N})\) extra space that MergeSort does
, Partition array into left and right sub-arrays
- Choose an element of the array, called pivot
- the elements in left sub-array are all less than pivot
- elements in right sub-array are all greater than pivot
, Recursively sort left and right sub-arrays
, Concatenate left and right sub-arrays in O(1) time

\section*{"Four easy steps"}
- To sort an array S
1. If the number of elements in \(\mathbf{S}\) is 0 or 1 , then return. The array is sorted.
2. Pick an element \(v\) in \(\mathbf{S}\). This is the pivot value.
3. Partition \(\mathbf{S}-\{v\}\) into two disjoint subsets, \(\mathbf{S}_{1}\)
\(=\{\) all values \(x \leq v\}\), and \(\mathbf{S}_{2}=\{\) all values \(x \geq v\}\).
4. Return QuickSort( \(\mathbf{S}_{1}\) ), \(v\), QuickSort( \(\mathbf{S}_{2}\) )

\section*{The steps of QuickSort}


\section*{Details, details}
- Implementing the actual partitioning
- Picking the pivot
, want a value that will cause \(\left|S_{1}\right|\) and \(\left|S_{2}\right|\) to be non-zero, and close to equal in size if possible
- Dealing with cases where the element equals the pivot

\section*{Quicksort Partitioning}
- Need to partition the array into left and right subarrays
, the elements in left sub-array are \(\leq\) pivot
, elements in right sub-array are \(\geq\) pivot
- How do the elements get to the correct partition?
, Choose an element from the array as the pivot
, Make one pass through the rest of the array and swap as needed to put elements in partitions

\section*{Partitioning:Choosing the pivot}
- One implementation (there are others)
, median3 finds pivot and sorts left, center, right
- Median3 takes the median of leftmost, middle, and rightmost elements
- An alternative is to choose the pivot randomly (need a random number generator; "expensive")
- Another alternative is to choose the first element (but can be very bad. Why?)
, Swap pivot with next to last element

\section*{Partitioning in-place}
, Set pointers i and j to start and end of array
, Increment i until you hit element A[i] > pivot
, Decrement j until you hit elmt \(A[j]\) < pivot
, Swap \(A[i]\) and \(A[j]\)
, Repeat until i and \(j\) cross
, Swap pivot (at A[N-2]) with A[i]

\section*{Example}

Choose the pivot as the median of three
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 8 & 1 & 4 & 9 & 0 & 3 & 5 & 2 & 7 & 6 \\
\hline
\end{tabular}

Median of \(0,6,8\) is 6 . Pivot is 6
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 4 & 9 & 7 & 3 & 5 & 2 & 6 & 8 \\
\hline
\end{tabular}

Place the largest at the right and the smallest at the left.
Swap pivot with next to last element.

\section*{Example}


Move i to the right up to \(\mathrm{A}[\mathrm{i}]\) larger than pivot. Move \(j\) to the left up to \(A[j]\) smaller than pivot. Swap

\section*{Example}


\section*{Recursive Quicksort}
```

Quicksort(A[] : integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF \leq right then
pivot := median3(A,left,right);
pivotindex := Partition(A,left,right-1,pivot);
Quicksort(A, left, pivotindex - 1);
Quicksort(A, pivotindex + 1, right);
else
Insertionsort(A,left,right);
}

```

Don't use quicksort for small arrays. CUTOFF = 10 is reasonable.

\section*{Quicksort Best Case Performance}
- Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
\[
, T(0)=T(1)=O(1)
\]
- constant time if 0 or 1 element
, For \(\mathrm{N}>1,2\) recursive calls plus linear time for partitioning
\[
, \mathrm{T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{O}(\mathrm{~N})
\]
- Same recurrence relation as Mergesort
\[
\Rightarrow T(N)=\underline{O(N \log N)}
\]

\section*{Quicksort Worst Case Performance}
- Algorithm always chooses the worst pivot one sub-array is empty at each recursion
, \(\mathrm{T}(\mathrm{N}) \leq \mathrm{a}\) for \(\mathrm{N} \leq \mathrm{C}\)
, \(T(N) \leq T(N-1)+b N\)
, \(\leq T(N-2)+b(N-1)+b N\)
, \(\leq T(C)+b(C+1)+\ldots+b N\)
, \(\leq \mathrm{a}+\mathrm{b}(\mathrm{C}+(\mathrm{C}+1)+(\mathrm{C}+2)+\ldots+\mathrm{N})\)
, \(\mathrm{T}(\mathrm{N})=\mathrm{O}\left(\mathrm{N}^{2}\right)\)
- Fortunately, average case performance is \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\) (see text for proof)

\section*{Properties of Quicksort}
- Not stable because of long distance swapping.
- No iterative version (without using a stack).
- Pure quicksort not good for small arrays.
- "In-place", but uses auxiliary storage because of recursive call (O(logn) space).
- O(n log n) average case performance, but \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) worst case performance.

\section*{Folklore}
- "Quicksort is the best in-memory sorting algorithm."
- Truth
, Quicksort uses very few comparisons on average.
, Quicksort does have good performance in the memory hierarchy.
- Small footprint
- Good locality```

