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Readings

• Reading 
› Sections 9.5 and 9.6
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Graph Searching

• Find Properties of Graphs
› Spanning trees
› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Finding the web graph – used by Google and 

others
› Garbage collection – used in Java run time system
› Alternating paths for matching
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Graph Searching Methodology 
Breadth-First Search (BFS)

• Breadth-First Search (BFS)
› Use a queue to explore neighbors of 

source vertex, then neighbors of neighbors 
etc.

› All nodes at a given distance (in number of 
edges) are explored before we go further
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Graph Searching Methodology 
Depth-First Search (DFS)

• Depth-First Search (DFS)
› Searches down one path as deep as 

possible
› When no  nodes available, it backtracks

› When backtracking, it explores side-paths 
that were not taken

› Uses a stack (instead of a queue in BFS)

› Allows an easy recursive implementation
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Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do 

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i
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DFS Application: Spanning 
Tree

• Given a (undirected) graph G(V,E) a 
spanning tree of G is a graph G’(V’,E’)
› V’ = V, the tree touches all vertices  

(spans) the graph

› E’ is a subset of E such G’ is connected 
and there is no cycle in G’

› A graph is connected if given any two 
vertices u and v, there is a path from u to v
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Example of DFS: Graph 
connectivity and spanning tree
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Example Step 2
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Red links will define the spanning tree if 
the graph is connected
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Example Step 5
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Example Steps 6 and 7
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Example Steps 8 and 9
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Now back up.
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Example Step 10 (backtrack)
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DFS(5)

Back to 5,
but it has no
more neighbors.
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Example Step 12
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DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6) 

Back up to 4.
From 4 we can
get to 6.
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Example Step 13
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DFS(2)
DFS(3)
DFS(4)
DFS(6)

From 6 there is
nowhere new 
to go.  Back up.
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Example Step 14
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DFS(2)
DFS(3)
DFS(4)

Back to 4.
Keep backing up.
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Example Step 17
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All nodes are marked so graph is connected; 
red links define a spanning tree

All the way 
back to 1.

Done.
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Adjacency List Implementation

• Adjacency lists

1
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2 4 6
3 1 7
4 5
5 6 1
3 7 4
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5 2
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Index next
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Another Use for Depth First Search: 
Connected Components
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Connected Components
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Depth-first Search for Labeling 
Connected components

Main {
i : integer
for i = 1 to n do M[i] := 0;
label := 1;
for i = 1 to n do
if M[i] = 0 then DFS(G,M,i,label);
label := label + 1;

}
DFS(G[]: node ptr array, M[]: int array, i,label: int) {
v : node pointer; 
M[i] := label;
v := G[i];  // first neighbor //
while v ≠ null do
if M[v.index] = 0 then DFS(G,M,v.index,label);
v := v.next;  // next neighbor //

}
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Connected Components for 
Image Analysis

1

2 3

4



5/10/03 Graph Searching - Lecture 16 23

Performance DFS

• n vertices and m edges
• Storage complexity O(n + m)
• Time complexity O(n + m)
• Linear Time! 
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Breadth-First Search
BFS
Initialize Q to be empty;
Enqueue(Q,1) and mark 1;
while Q is not empty do

i := Dequeue(Q);
for each j adjacent to i do

if j is not marked then
Enqueue(Q,j) and mark j;

end{BFS}
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Can do Connectivity using 
BFS

• Uses a queue to order search

Queue = 1
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Beginning of example
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Queue = 2,4,6
Mark while on queue
to avoid putting in
queue more than once
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Depth-First vs Breadth-First

• Depth-First
› Stack or recursion
› Many applications

• Breadth-First
› Queue (recursion no help)
› Can be used to find shortest paths from the start 

vertex
› Can be used to find short alternating paths for 

matching
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Minimum Spanning Tree

• Edges are weighted: find minimum cost 
spanning tree

• Applications
› Find cheapest way to wire your house
› Find minimum cost to wire a message on 

the Internet


