Binomial Queues

CSE 373
Data Structures
Lecture 12

Reading

 Reading

> Section 6.8,

4/25/03 Binomial Queues - Lecture 12

Merging heaps

 Binary Heap has limited (fast) functionality
> FindMin, DeleteMin and Insert only
> does not support fast merges of two heaps

 For some applications, the items arrive in
orioritized clumps, rather than individually

* |s there somewhere in the heap design that
we can give up a little performance so that we
can gain faster merge capability?

4/25/03 Binomial Queues - Lecture 12 3

Binomial Queues

 Binomial Queues are designed to be merged
quickly with one another

e Using pointer-based design we can merge
large numbers of nodes at once by simply
pruning and grafting tree structures

 More overhead than Binary Heap, but the
flexibility Is needed for improved merging
Speed

4/25/03 Binomial Queues - Lecture 12

Worst Case Run Times

4/25/03

Binary Heap Binomial Queue

Insert O(log N) O(log N)

FindMin 0(1)

DeleteMin O(log N) O(log N)

Merge O(N)

Binomial Queues - Lecture 12

Binomial Queues

« Binomial queues give up ©(1) FindMin
performance in order to provide O(log N) merge
performance

A Dbinomial queue is a collection (or forest) of
heap-ordered trees

> Not just one tree, but a collection of trees
> each tree has a defined structure and capacity
> each tree has the familiar heap-order property

4/25/03 Binomial Queues - Lecture 12 6

Binomial Queue with 5 Trees

B, B, B,| B, (BS
depth 4 3 2 1 0
number of elements 24=16 23=18 22=4 21=2 | 20=1

4/25/03

Binomial Queues - Lecture 12

Structure Property

 Each tree contains two
copies of the previous tree
> the second copy is attached at
the root of the first copy
e The number of nodes in a
tree of depth d is exactly 29

4/25/03

BZ Bl BO
depth 2 1 0
number of elements 22=4 21=2 | 20=1

Binomial Queues - Lecture 12

Powers of 2 (one more time)

* Any number N ¢an be represented in
base 2: 2 ., &2

> A base 2 value identifies the powers of 2
that are to be included

o
— — — —

0 <t Q) —

I

N i‘?\, i';'\, ;?\, Hex,. |Decimal,,
T 3 3
o o :
110 |1 5 5

4/25/03 Binomial Queues - Lecture 12

Numbers of nodes

 Any number of entries in the binomial
gueue can be stored in a forest of
binomial trees

e Each tree holds the number of nodes
appropriate to its depth, i.e., 29 nodes

e S0 the structure of a forest of binomial
trees can be characterized with a single
binary number
> 101, —» 1-22+ 0-21 + 1-2° = 5 nodes

4/25/03 Binomial Queues - Lecture 12 10

Structure Examples

N=2,,=10, 22=4 21=2 20=1
N=3,,=11, 22=4 21=2 20=1

N=4,,=100,| 22=4 | 21=2 | 20=1
(4) ©
5)(®
(D
N=5,,=101,| 22=4 | 21=2 | 20=1

What is a merge?

 There is a direct correlation between
> the number of nodes in the tree
> the representation of that number in base 2
> and the actual structure of the tree

 When we merge two queues of sizes N, and
N,, the number of nodes In the new queue Is
the sum of N;+N,

 We can use that fact to help see how fast
merges can be accomplished

4/25/03 Binomial Queues - Lecture 12

12

Example 1.

Merge BQ.1 and
BQ.2

Easy Case.

There are no
comparisons and
there is no
restructuring.

BQO.1
N=1,,=1, 22=4 21=2 20=1
+ BQ.2
N=2,,=10, 22=4 21=2 20=1
=BQ.3
N=3,,=11, 22=4 21=2 20=1

Example 2.
Merge BQ.1 and BQ.2

This I1s an add with a
carry out.

It is accomplished with
one comparison and
one pointer change:
O(1)

(@)

BQ.1
N=2,,=10, 22=4 21=2 20=1
+ BQ.2
N=2,,=10, 22=4 21=2 20=1
=BQ3 | (&3

N=4,,=100, | 22=4 21=2 | 20=1

()

BQ.1
=3;0=11; 2°= 20=1
Example 3. T 0m
Merge BQ.1 and BQ.2
+ BQ.2
Part 1 - Form the
Carry' N=310=112 22: 20: 1
= carry
N=2,,=10, 22=4 =2 20=1

(@)

carry +BQ.1
N=2,,=10,| 22=4 | 28=2 | 20=1 | |N=3,,=11,| 2=4 | 21=2 | 20=1
Example 3.
. +BQ.2 O
Part 2 - Add the existing
values and the carry.
N=3,,=11, 22=4 21=2 20=1
=BQ.3 | (W)
N=6,,=110, 22=4 21=2 | 20=1

Merge Algorithm

 Just like binary addition algorithm

 Assume trees X,,...,X,and Yg,...,Y, are
binomial queues

> X, and Y, are of type B; or null

C, := null; //initial carry is null//
for 1 = 0 to n do

combine X,,Y,, and C; to form Z, and new C,
Z := C

n+1l n+1l

4/25/03 Binomial Queues - Lecture 12 17

Exercise

©

@

920,

&-®

N=3,,=11, 22=4 21 =

|
N

20=1 N=7,,=111,

.|®-Q

4/25/03 Binomial Queues - Lecture 12

O(log N) time to Merge

» For N keys there are at most/log, N
trees in a binomial forest.

 Each merge operation only looks at the
root of each tree.

e Total time to merge is O(log N).

4/25/03 Binomial Queues - Lecture 12

19

Insert

» Create a single node queue B, with
the new item and merge with
existing queue

 O(log N) time

4/25/03 Binomial Queues - Lecture 12

20

DeleteMiIn

Assume we have a binomial forest X,,..., X,
-ind tree X, with the smallest root
Remove X, from the queue

Remove root of X, (return this value)
> This yields a binomial forest Y, Y, ...,Y, ;.

5. Merge this new queue with remainder of the
original (from step 3)

« Total time = O(log N)

I

4/25/03 Binomial Queues - Lecture 12 21

Implementation

 Binomial forest as an array of multiway trees
> FirstChild, Sibling pointers
O 1 23 45 6 7

O @6 4
(9 W (@ A b
@G @ 9 4//,/7//,10
a3 e
e

4/25/03 Binomial Queues - Lecture 12 22

DeleteMin Example

FindMin
O 1 2 3 45 6 7 O 1 2 3 45 6 7
/ \ /
Y v ¥ ¥ v .
5 2 1 5 2 Remove min
¢19 ¢I4 7 10 ¢19 4 7 10
//V] //V //V] //V
Jis/ 8 ¢12 Jis/ 8 ¢12
I//v I//v
v v
15 15

1 | Return this

4/25/03 Binomial Queues - Lecture 12 23

O 123 45 6 7

4/25/03

Binomial Queues - Lecture 12

Oldforest O 1 2 3 45 6 7
2 SE
J ;
9 ¢9
.4/ - New forest 0 123 45 & 7
/ \
51 VAR T
, 7 10 7 4
¢ / /
v Y
15 12] [13
] e
v
15

24

0O 123 45 6 7

/
5/ > 0 123 45 6
/ \
v Merge/
9 v
5
;
O 12 3 45 6 7 6
/
v X
10| [7 4
g
I//v
v
15

4/25/03 Binomial Queues - Lecture 12

Why Binomial?

(d j __ d B, B, B, B, | By
k (d—Kk)'k! Q
tree depth d 4 3 2 1 0
nodes at depth k 1,4,6,4,1 1,331 1,2,1 1,1 1
4/25/03 Binomial Queues - Lecture 12 26

Other Priority Queues

o Leftist Heaps
> O(log N) time for insert, deletemin, merge

> The idea Is to have the left part of the heap
be long and the right part short, and to
perform most operations on the left part.

o Skew Heaps (“splaying leftist heaps”)

> O(log N) amortized time for insert,
deletemin, merge

4/25/03 Binomial Queues - Lecture 12 27

Exercise Solution

4/25/03

@ (2 ® @
& T W G
@
(2) @
(9 DW
& @

Binomial Queues - Lecture 12

28

