
Pointers (review and
examples)

CSE 373
Data Structures

Lecture 2

3/26/03 Pointers - Lecture 2 2

Basic Types and Arrays

• Basic Types
› integer, real (floating point), boolean (0,1),

character

• Arrays
› A[0..99] : integer array

A
0 1 2 3 4 5 6 7 99

…

A[5]

3/26/03 Pointers - Lecture 2 3

Records and Pointers

• Record (also called a struct)
› Group data together that are related

› To access the fields we use “dot” notation.

real_part : real

imaginary_part : real

X : complex pointer

X.real_part
X.imaginary_part

3/26/03 Pointers - Lecture 2 4

Record Definition

• Record definition creates a new type
Definition
record complex : (

real_part : real,

imaginary_part : real

)

Use in a declaration
X : complex

3/26/03 Pointers - Lecture 2 5

Pointer

• A pointer is a reference to a variable or
record (or object in Java world).

• In C, if X is of type pointer to Y then *X is of
type Y

X : blob pointer

blob*X

3/26/03 Pointers - Lecture 2 6

Creating a Record

• We use the “new” operator to create a
record.
P : pointer to blob;

P := new blob;

P

P

(null pointer)

3/26/03 Pointers - Lecture 2 7

Simple Linked List

• A linked list
› Group data together in a flexible, dynamic way.
› We’ll describe several list ADTs later.

4 9 13 20

L : node pointer

record node : (
data : integer,
next : node pointer

)

3/26/03 Pointers - Lecture 2 8

Application
Sparse Polynomials

• 10 + 4 x2 + 20 x40 + 8 x86

0
10

2
4

40
20

86
8

P

record poly : (

exp : integer,

coef : integer,

next : poly pointer

)

exp

coef

next

Exponents in
Increasing order

3/26/03 Pointers - Lecture 2 9

Identically Zero Polynomial

P null pointer

1
0

2
0

86
0

P

3/26/03 Pointers - Lecture 2 10

Addition of Polynomials

0
10

2
4

40
20

86
8

P

1
7

2
10

86
-8

Q

10 + 4 x2 + 20 x40 + 8 x86

7 x + 10 x2 - 8 x86

3/26/03 Pointers - Lecture 2 11

Recursive Addition
Add(P, Q : poly pointer): poly pointer{
R : poly pointer
case {
P = null : R := Q ;
Q = null : R := P ;
P.exp < Q.exp : R := P ;

R.next := Add(P.next,Q);
P.exp > Q.exp : R := Q ;

R.next := Add(P,Q.next);
P.exp = Q.exp : R := P ;

R.coef := P.coef + Q.coef ;
R.next := Add(P.next,Q.next);

}
return R
}

3/26/03 Pointers - Lecture 2 12

Example

0
10

2
4

40
20

86
8

P

1
7

2
10

86
-8

Q

Add

3/26/03 Pointers - Lecture 2 13

Example (first call)

0
10

2
4

40
20

86
8

P

1
7

2
10

86
-8

Q

Add

R

3/26/03 Pointers - Lecture 2 14

The Recursive Call

0
10

2
4

40
20

86
8

P

1
7

2
10

86
-8

Q

Add

R

3/26/03 Pointers - Lecture 2 15

During the Recursive Call

0
10

2
14

40
20

86
0

1
7

2
10

86
-8

Add

R

Return
value

Represent
return values

3/26/03 Pointers - Lecture 2 16

After the Recursive Call

0
10

2
14

40
20

86
0

1
7

2
10

86
-8

Add

R

Return
value

3/26/03 Pointers - Lecture 2 17

The final picture

0
10

2
14

40
20

86
0

1
7

2
10

86
-8

R

garbage

unneeded

3/26/03 Pointers - Lecture 2 18

Notes on Addition

• Addition is destructive, that is, the
original polynomials are gone after the
operation.

• We don’t salvage “garbage” nodes.
Let’s talk about this.

• We don’t consider the case when the
coefficients cancel. Let’s talk about this.

3/26/03 Pointers - Lecture 2 19

Unneeded nodes to Garbage

• How would you force the unneeded
node to be garbage in the code on slide
11?

• Suggestions?

3/26/03 Pointers - Lecture 2 20

Memory Management –
Private Store

• Private store – get blocks from a private
store when possible and return them
when done.
+ Efficiently uses blocks of a specific size
- The list of unused blocks can build up

eventually using too much memory.

3/26/03 Pointers - Lecture 2 21

Private Store

0
10

2
14

40
20

86
0

1
7

2
10

86
-8

R

garbage

unneeded

3/26/03 Pointers - Lecture 2 22

Private Store

0
10

2
14

40
20

86
0

1
7

2
10

86
-8

R

FreeList

3/26/03 Pointers - Lecture 2 23

Memory Management –
Global Allocator

• Global Allocator’s store – always get
and return blocks to global allocator
+ Necessary for dynamic memory.
+ Blocks of various sizes can be merged if

they reside in contiguous memory.
- Allocator may not handle blocks of different

sizes well.
- Allocator may be slower than a private

store.

3/26/03 Pointers - Lecture 2 24

Memory Management –
Garbage Collection

• Garbage collection – run time system
recovers inaccessible blocks from time-
to-time. Used in Lisp, Smalltalk, Java.
+ No need to return blocks to an allocator or

keep them in a private store.
- Care must be taken to make unneeded

blocks inaccessible.
- When garbage collection kicks in there

may be undesirable response time.

3/26/03 Pointers - Lecture 2 25

Solution for Polyn. Addition

P.exp = Q.exp : R := P ;

R.coef := P.coef + Q.coef ;

if R.coef = 0 then

R := Add(P.next,Q.next);

// The terms with coef = 0 have been removed from the
// result

else

R.next := Add(P.next,Q.next);

}

3/26/03 Pointers - Lecture 2 26

Use of Private Store or
Global Allocator

P.exp = Q.exp : R := P ;

R.coef := P.coef + Q.coef ;

if R.coef = 0 then

R := Add(P.next,Q.next);

Free(P); Free(Q);

else

R.next := Add(P.next,Q.next);

Free(Q);

}

