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Basic Types and Arrays

• Basic Types
› integer, real (floating point), boolean (0,1), 

character

• Arrays
› A[0..99] : integer array

A
0  1  2  3  4  5  6  7                99

…

A[5]
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Records and Pointers

• Record (also called a struct)
› Group data together that are related

› To access the fields we use “dot” notation. 

real_part : real

imaginary_part : real

X : complex pointer

X.real_part
X.imaginary_part
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Record Definition

• Record definition creates a new type
Definition
record complex : (

real_part : real, 

imaginary_part : real

)

Use in a declaration
X : complex
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Pointer

• A pointer is a reference to a variable  or 
record (or object in Java world).

• In C, if X is of type pointer to Y then *X is of 
type Y

X : blob pointer

blob*X



3/26/03 Pointers - Lecture 2 6

Creating a Record

• We use the “new” operator to create a 
record.
P : pointer to blob;

P := new blob;

P

P

(null pointer)
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Simple Linked List

• A linked list
› Group data together in a flexible, dynamic way.
› We’ll describe several list ADTs later.

4 9 13 20

L : node pointer

record node : (
data : integer,
next : node pointer

)
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Application
Sparse Polynomials

• 10 + 4 x2 + 20 x40 + 8 x86

0
10

2
4

40
20

86
8

P

record poly : (

exp : integer, 

coef : integer,

next : poly pointer

)

exp

coef 

next

Exponents in 
Increasing order
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Identically Zero Polynomial

P null pointer

1
0

2
0

86
0

P
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Addition of Polynomials
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Q

10 + 4 x2 + 20 x40 + 8 x86

7 x + 10 x2 - 8 x86
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Recursive Addition
Add(P, Q : poly pointer): poly pointer{
R : poly pointer
case {
P = null : R := Q ; 
Q = null : R := P ;
P.exp < Q.exp : R := P ; 

R.next := Add(P.next,Q);
P.exp > Q.exp : R := Q ;

R.next := Add(P,Q.next);
P.exp = Q.exp : R := P ;

R.coef := P.coef + Q.coef ;
R.next := Add(P.next,Q.next);

}
return R
}
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Example
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Example (first call)
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The Recursive Call
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During the Recursive Call
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Return
value

Represent 
return values
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After the Recursive Call
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The final picture
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Notes on Addition

• Addition is destructive, that is, the 
original polynomials are gone after the 
operation.

• We don’t salvage “garbage” nodes.  
Let’s talk about this.

• We don’t consider the case when the 
coefficients cancel.  Let’s talk about this. 
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Unneeded nodes to Garbage

• How would you force the unneeded 
node to  be garbage in the code on slide 
11?

• Suggestions?
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Memory Management –
Private Store

• Private store – get blocks from a private 
store when possible and return them 
when done.
+ Efficiently uses blocks of a specific size
- The list of unused blocks can build up 

eventually using too much memory.
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Private Store
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Private Store
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Memory Management –
Global Allocator

• Global Allocator’s store – always get 
and return blocks to global allocator
+  Necessary for dynamic memory.
+ Blocks of various sizes can be merged if 

they reside in contiguous memory.
- Allocator may not handle blocks of different 

sizes well.
- Allocator may be slower than a private 

store.
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Memory Management –
Garbage Collection

• Garbage collection – run time system 
recovers inaccessible blocks from time-
to-time.  Used in Lisp, Smalltalk, Java.
+ No need to return blocks to an allocator or 

keep them in a private store.
- Care must be taken to make unneeded 

blocks inaccessible.
- When garbage collection kicks in there 

may be undesirable response time.
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Solution for Polyn. Addition

P.exp = Q.exp : R := P ;

R.coef := P.coef + Q.coef ;

if R.coef = 0 then 

R := Add(P.next,Q.next);

// The terms with coef = 0 have been removed from the 
// result

else

R.next := Add(P.next,Q.next);

} 
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Use of Private Store or 
Global Allocator

P.exp = Q.exp : R := P ;

R.coef := P.coef + Q.coef ;

if R.coef = 0 then 

R := Add(P.next,Q.next);

Free(P); Free(Q);

else

R.next := Add(P.next,Q.next);

Free(Q);

}


