
Administrivia- Introduction

CSE 373
Data Structures

3/26/03 CSE 373 SP 03 - Introduction 2

Staff

• Instructor
› Linda G. Shapiro,

shapiro@cs.washington.edu

• TA’s
› Tian Sang, sang@cs.washington.edu

› Ian Simon, iansimon@cs.washington.edu

3/26/03 CSE 373 SP 03 - Introduction 3

Linda G. Shapiro

• Professor of Computer Science and Engineering
• Professor of Electrical Engineering
• Adjunct Professor of Medical Education and Biomedical

Informatics
• Research: Computer Vision & Content-Based Image Retrieval

3/26/03 CSE 373 SP 03 - Introduction 4

Web Page

• All info is on the web page for CSE 373
› http://www.cs.washington.edu/373

› also known as
• http://www.cs.washington.edu/education/courses/373/03sp
• Be sure to follow the link with “More info”

http://www.cs.washington.edu/education/courses/373/03sp/intro.html

3/26/03 CSE 373 SP 03 - Introduction 5

Office Hours

• Linda Shapiro – 214 Sieg Hall
› MWF 9:30-10:30 or by appointment

• Ian Simon – 226 Sieg Hall
› MW 1:00 – 2:00

• Tian Sang – 226 Sieg Hall
› TTh 2:30 – 3:30

• Exact room(s) in 226 Sieg to be posted
later

3/26/03 CSE 373 SP 03 - Introduction 6

CSE 373 E-mail List

• Subscribe by going to the class web
page.

• E-mail list is used for posting
announcements by instructor and TAs.

• It is your responsibility to subscribe. It
might turn out to be very helpful for
assignments hints, corrections etc.

3/26/03 CSE 373 SP 03 - Introduction 7

Computer Lab

• Math Sciences Computer Center
› http://www.ms.washington.edu/

• Project can be done in Java or C++
› We ordered most of the texts in Java,

but there should be at least 10 in C++.

3/26/03 CSE 373 SP 03 - Introduction 8

Textbook

• Data Structures and Algorithm Analysis in
Java (or in C++), by Weiss

• See Web page for errata and source code

3/26/03 CSE 373 SP 03 - Introduction 9

Grading

• Assignments and programming projects
50%

• Midterm 20%
› Wednesday, May 7, 2003 (not definite yet)

• Final 30%
› 2:30-4:20 p.m. Wednesday, June 11, 2003

3/26/03 CSE 373 SP 03 - Introduction 10

Class Overview

• Introduction to many of the basic data structures
used in computer software
› Understand the data structures
› Analyze the algorithms that use them
› Know when to apply them

• Practice design and analysis of data structures.
• Practice using these data structures by writing

programs.
• Data structures are the plumbing and wiring of

programs.

3/26/03 CSE 373 SP 03 - Introduction 11

Goal

• You will understand
› what the tools are for storing and

processing common data types
› which tools are appropriate for which need

• So that you will be able to
› make good design choices as a developer,

project manager, or system customer

3/26/03 CSE 373 SP 03 - Introduction 12

Course Topics

• Introduction to Algorithm Analysis
• Lists, Stacks, Queues
• Search Algorithms and Trees
• Hashing and Heaps
• Sorting
• Disjoint Sets
• Graph Algorithms

3/26/03 CSE 373 SP 03 - Introduction 13

Reading

• Chapters 1 and 2, Data Structures and
Algorithm Analysis in Java, by Weiss
› Very important sections:

• Section 1.2.5 on proofs

• Section 1.3 on recursion

› Most of Chapter 2 will be seen in Lecture 4

3/26/03 CSE 373 SP 03 - Introduction 14

Data Structures: What?

• Need to organize program data according to
problem being solved

• Abstract Data Type (ADT) - A data object and a
set of operations for manipulating it
› List ADT with operations insert and delete
› Stack ADT with operations push and pop

• Note similarity to Java classes
› private data structure and public methods

3/26/03 CSE 373 SP 03 - Introduction 15

Data Structures: Why?

• Program design depends crucially on how
data is structured for use by the program
› Implementation of some operations may become

easier or harder
› Speed of program may dramatically decrease or

increase
› Memory used may increase or decrease
› Debugging may be become easier or harder

3/26/03 CSE 373 SP 03 - Introduction 16

Terminology
• Abstract Data Type (ADT)

› Mathematical description of an object with set of
operations on the object. Useful building block.

• Algorithm
› A high level, language independent, description of

a step-by-step process

• Data structure
› A specific family of algorithms for implementing an

abstract data type.

• Implementation of data structure
› A specific implementation in a specific language

3/26/03 CSE 373 SP 03 - Introduction 17

Algorithm Analysis: Why?

• Correctness:
› Does the algorithm do what is intended.

• Performance:
› What is the running time of the algorithm.
› How much storage does it consume.

• Different algorithms may correctly solve
a given task
› Which should I use?

3/26/03 CSE 373 SP 03 - Introduction 18

Iterative Algorithm for Sum

• Find the sum of the first num integers
stored in an array v.

sum(v[]: integer array, num: integer): integer{

temp_sum: integer ;

temp_sum := 0;

for i = 0 to num – 1 do

temp_sum := v[i] + temp_sum;
return temp_sum;

}

Note the use of pseudocode

3/26/03 CSE 373 SP 03 - Introduction 19

Programming via Recursion

• Write a recursive function to find the
sum of the first num integers stored in
array v.

sum (v[]: integer array, num: integer): integer {

if num = 0 then

return 0

else

return v[num-1] + sum(v,num-1);

}

3/26/03 CSE 373 SP 03 - Introduction 20

Pseudocode

• In the lectures algorithms will be presented in
pseudocode.
› This is very common in the computer science

literature
› Pseudocode is usually easily translated to real

code.
› This is programming language independent

• Pseudocode should also be used for
homework

3/26/03 CSE 373 SP 03 - Introduction 21

Proof by Induction

• Basis Step: The algorithm is correct for
the base case (e.g. n=0) by inspection.

• Inductive Hypothesis (n=k): Assume
that the algorithm works correctly for the
first k cases, for any k.

• Inductive Step (n=k+1): Given the
hypothesis above, show that the k+1
case will be calculated correctly.

3/26/03 CSE 373 SP 03 - Introduction 22

Program Correctness by
Induction

• Basis Step: sum(v,0) = 0. !!!!
• Inductive Hypothesis (n=k): Assume

sum(v,k) correctly returns sum of first k
elements of v, i.e. v[0]+v[1]+…+v[k-1]

• Inductive Step (n=k+1): sum(v,n)
returns v[k]+sum(v,k) which is the sum
of first k+1 elements of v. !!!!

3/26/03 CSE 373 SP 03 - Introduction 23

Algorithms vs Programs

• Proving correctness of an algorithm is very
important
› a well designed algorithm is guaranteed to work

correctly and its performance can be estimated

• Proving correctness of a program (an
implementation) is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap

between mathematical algorithms and programs

