Disjoint Union / Find

CSE 373 Data Structures Unit 14

Reading: Chapter 8

Equivalence Relations

- A relation R is defined on set S if for every pair of elements a, $b \in S$, a R b is either true or false.
- An equivalence relation is ^a relation R that satisfies the 3 properties:
	- › Reflexive: a R ^a for all ^a∈S
	- › Symmetric: ^a R b iff b R a; for all a,b∈S
	- \rightarrow Transitive: a R b and b R c implies a R c

2

Equivalence Classes

- Given an equivalence relation R, decide whether a pair of elements a,b∈S is such that a R b.
- The equivalence class of an element ^a is the subset of S of all elements related to a.
- Equivalence classes are disjoint sets

Dynamic Equivalence Problem

- Starting with each element in ^a singleton set, and an equivalence relation, build the equivalence classes
- Requires two operations:
	- \rightarrow Find the equivalence class (set) of a given element
	- › Union of two sets
- It is a dynamic (on-line) problem because the sets change during the operations and Find must be able to cope!

Disjoint Union - Find

- Maintain ^a set of disjoint sets. › {3,5,7} , {4,2,8}, {9}, {1,6}
- Each set has ^a unique name, one of its members
	- › {3,5,7} , {4,2,8}, {9}, {1,6}

Union

- Union(x,y) take the union of two sets named ^x and y
	- › {3,5,7} , {4,2,8}, {9}, {1,6}
	- › Union(5,1)
	- $\{3,5,7,1,6\}$, $\{4,2,8\}$, $\{9\}$,

Find

- Find(x) return the name of the set containing x.
	- › {3,5,7,1,6}, {4,2,8}, {9},
	- \rightarrow Find(1) = 5
	- \rightarrow Find(4) = 8

An Application

• Build a random maze by erasing edges.

5

• Pick Start and End

• Repeatedly pick random edges to delete.

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles no cell can reach itself by ^a path unless it retraces some part of the path.

A Cycle (we don't want that)

9

13

14

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},… {36} } each cell is unto itself. We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 60 edges total.

Basic Algorithm

- S = set of sets of connected cells
- E ⁼ set of edges

While there is more than one set in Spick ^a random edge (x,y) u := Find(x); ^v := Find(y); if u ≠ ^v then Union(u,v) //knock down the wall between the cells (cells in Remove (x,y) from E $//$ the same set are connected) • If u=v there is already ^a path between ^x and y • All remaining members of E form the maze

Example

Example at the End

• Find(x) follow ^x to the root and return the root

Union Operation

• Union(i,j) - assuming i and j roots, point i to j.

Simple Implementation

• Array of indices (Up[i] is parent of i) 123 5 (5) (4) 670 | 1 | 0 | 7 | 7 | 5 | 0 1 2 3 4 5 6 7 up Up $[x] = 0$ means x is a root.

Union

Union(up[] : integer array, x, y : integer) : { //precondition: ^x and y are roots// Up[x] := y }

Constant Time!

- Design Find operator
	- › Recursive version
	- › Iterative version

Find(up[] : integer array, $x :$ integer) : integer { //precondition: ^x is in the range 1 to size// ???}

25

A Bad Case

Weighted Union

- Weighted Union (weight ⁼ number of nodes)
	- \rightarrow Always point the smaller tree to the root of the larger tree

Example Again

29

Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2ʰ.
- Proof by induction
	- \rightarrow Basis: h = 0. The up-tree has one node, 2⁰ = 1

h-1

 \rightarrow Inductive step: Assume true for all h' $<$ h.

Minimum weight up-tree of height h formed by weighted unions T_1 $_1$ \rightarrow $/T_2$ T

 $W(T_1) > W(T_2) > 2^{h-1}$ Weighted unionInduction hypothesis $W(T) > 2^{h-1} + 2^{h-1} = 2^h$

30

Analysis of Weighted Union

- Let T be an up-tree of weight ⁿ formed by weighted union. Let h be its height.
- \bullet n $>$ 2 $^{\mathsf{h}}$
- $\bullet \;\log_2\mathsf{n} \geq \mathsf{h}$
- Find(x) in tree T takes O(log n) time.
- Can we do better?

Example of Worst Cast (cont')

After n -1 ⁼ n/2 ⁺ n/4 ⁺ …+ 1 Weighted Unions

33

Elegant Array Implementation

34

Weighted Union

```
W-Union(i,j : index){
//i and j are roots//
  wi := weight[i];
  wj := weight[j];if wi < wj then
    up[i] := j;weight[j] := wi + wj;elseup[j] := i;weight[i] := wi + wj;}
```
Path Compression

• On ^a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works

Path Compression Find

```
PC-Find(i : index) {
  r := i;
  while up[r] ≠ 0 do //find root//
    r := up[r];
  if i ≠ r then //compress path//
    k := up[i];
    while k ≠ r do
      up[i] := r;i := k;
      k := up[k]
  return(r)
}
```
38

Example

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for ^a W-Union is O(1) and for ^a PC-Find is O(log n).
- Time complexity for ^m [≥] ⁿ operations on n elements is O(m log* n) where log* ⁿ is a very slow growing function.
	- › log * ⁿ < 7 for all reasonable n. Essentially constant time per operation!

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
	- › average time per operation is essentially ^a constant.
	- › worst case time for ^a PC-Find is O(log n).
- An individual operation can be costly, but over time the average cost per operation is not.

Find Solutions

Recursive

```
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
if up[x] = 0 then return x
else return Find(up,up[x]);
}
```
Iterative

```
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
while up[x] ≠ 0 do
  x := up[x];
return x;
}
```