Disjoint Union / Find

CSE 373
Data Structures
Unit 14

Reading: Chapter 8

Equivalence Classes

Equivalence Relations

« Given an equivalence relation R, decide
whether a pair of elements a,bl]S is
such thata R b.

* The equivalence class of an element a
is the subset of S of all elements
related to a.

« Equivalence classes are disjoint sets

« Arelation R is defined on set S if for
every pair of elements a, blJdS,aR b is
either true or false.

* An equivalence relation is a relation R
that satisfies the 3 properties:

> Reflexive: a R a for all alJS
> Symmetric: a R b iff b R a; for all a,b0S
> Transitive:aR band b RcimpliesaR c

Dynamic Equivalence
Problem

» Starting with each element in a singleton set,

and an equivalence relation, build the
equivalence classes

* Requires two operations:

> Find the equivalence class (set) of a given
element

> Union of two sets

* Itis a dynamic (on-line) problem because the

sets change during the operations and Find
must be able to cope!

Disjoint Union - Find Union

* Maintain a set of disjoint sets. * Union(x,y) — take the union of two sets
> {3,5,7}, {4,2,8}, {9}, {1,6} named x and y

« Each set has a unique name, one of its > {3,5,7}, {4,2,8}, {9}, {1,6}
members > Union(5,1)
> {3,5,7}, {4,2,8}, {9}, {1,6} {3,5,7,1,6}, {4,2,8}, {9},

Find An Application
 Find(x) — return the name of the set * Build a random maze by erasing edges.
containing X.
> {3,5,7,1,6}, {4,2,8}, {9},
> Find(1) =5

> Find(4) = 8

An Application (ct'd) An Application (ct'd)

» Pick Start and End * Repeatedly pick random edges to delete.
Start Start
End End
Desired Properties A Cycle (we don’t want that)
* None of the boundary is deleted
» Every cell is reachable from every other Start
cell.

» There are no cycles — no cell can reach
itself by a path unless it retraces some
part of the path.

End

11 12

A Good Solution

Start

End

13

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} } each cell is unto itself.

We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Start

1

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

End

15

Good Solution : A Hidden
Tree

Start

End

Basic Algorithm

14

* S = set of sets of connected cells
» E =set of edges

While there is more than one setin S
pick a random edge (x,y)
u :=Find(x); v :=Find(y);
if u #vthen
Union(u,v) //knock down the wall between the cells (cells in
Remove (x,y) from E /lthe same set are connected)

« If u=v there is already a path between x and y
« All remaining members of E form the maze

16

Example Step

Example

S S
{1,2,7,8,9,13,19} {1,2,7,8,9,13,19,14,20 26,27}

{3} tY— Find(8)=7 {3}

4 Find(14) = 20 {4

{5} — 5}

%} Union(7,20) %}

iy i
1

{14,20,26,27} {15,16,21}

{15,16,21)

{22,23,24,29,39,32

{22,23,24,29,39,32 33,34,35,36}

33,34,35,36}
18

Example at the End

Pick (8,14) S
{1,2,7,8,9,13,19}
{3}
Stat 1 2 | 3|4 |5 |6 {4
{5}
7 8 9 10 | 11 | 12 {6}
{10}
13 | 14 | 15 16 | 17 | 18 17
19 | 20 | 21 | 22 23| 24 {12}
{14,20,26,27}
25|26 27|28 |29 30 {15,16,21}
3132 33 34 35 36 End
{22,23,24,29,30,32
33,34,35,36) 17
Example
Pick (19,20) S
{1,2,7,8,9,13,19
14,20,26,27}
Start 1 2 | 3| 4|5 |6 {3}
{4}
7 8 9 10 | 11 | 12 {5}
{6}
13 | 14 | 15 16 | 17 | 18 {10}
19|20 21|22 23|24 {11,17}
{12}
25|26 27|28 |29 30 {15,16,21}
31 (32 33 34 35 36 End

{22,23,24,29,39,32
33,34,35,36}) 19

S
{1,2,3,456,7,... 36}

Stat 1 2 | 3|4 5 6

13|14 |15 16 17 | 18

19120 |21 22 23| 24

25 26 27 28|29 30

31132 33 34 35 36 End

20

Up-Tree for DU/F

Initial state @ @ @ @ @ @ @

Intermediate @ @ @,
state é@ /
Roots are the names of each set. Cg

21

Union Operation

Find Operation

* Union(i,j) - assuming i and j roots, point i
to .

Union(1,7)

23

» Find(x) follow x to the root and return

@é@ ® &

the root

Find(6) = 7

Simple Implementation

22

 Array of indices (UpJi] is parent of i)

Up [x] = 0 means

12 3 45 67 X IS a root.

up‘

o[1]o]7[7[5]0]

@

-

® Cé
o

24

Union

Union(up[] : integer array,

X,y :

/Il precondition: x and y are roots//

Up[x] =y
}

Constant Time!

A Bad Case

i nteger) :

25

Find

» Design Find operator

> Recursive version
> lterative version

Find(up[] : integer array, x : integer) : integer {
/lprecondition: x is in the range 1 to sizel//
???

}

26

Weighted Union

Union(1,2)

Union(2,3)
Union(n-1,n)

Find(1) n steps!!

27

» Weighted Union (weight = number of nodes)

> Always point the smaller tree to the root of the
larger tree

W-Union(1,7)

28

Example Again Analysis of Weighted Union

®©@ @ ® -+ ® « With weighted union an up-tree of height h
N Union(1,2) has weight at least 2".
(5'@ ® ® _ * Proof by induction
) Un'?n(2’3) > Basis: h = 0. The up-tree has one node, 2°=1
®/@é> ; > Inductive step: Assume true for all h’ < h.
Union(n-1,n) T W(T,) > W(T,) > 2"t

6@% Minimum weight Q th Weighfted mdﬁcﬁon
. _) .) : induction
Find(1) constant time up-tree of height h | union ypothesis

formed by h-1 4 2h-1 = 9h
weighted unions WMz 2M+ 2 =2

29 30

Analysis of Weighted Union Worst Case for Weighted

Union
n/2 Weighted Unions
* Let T be an up-tree of weight n formed
by weighted union. Let h be its height. g g g g g g g g
en>2n n/4 Weighted Unions

log, n>h e b b %
Find(x) in tree T takes O(log n) time. © i © i = % - i

Can we do better?

31 32

Example of Worst Cast (cont’) Elegant Array Implementation

After n -1 =n/2 + n/4 + ...+ 1 Weighted Unions @ @ p 0
1

- | e $ ®
W é

1 1 2 345 6
. Can save the extra
™ Find _up 0111017715 space by storing the
If there are n = 2k nodes then the longest weight | 2 1 complement of weight
path from leaf to root has length k. in the space reserved

33 34

Weighted Union Path Compression
)"}‘IUH;S(J' Jare 'rggtegf « On a Find operation point all the nodes on the
W o= weight[i]; search path directly to the root.

W o= weight[j];

if wi <w then
wei ght[j] += wi + wi: PCFlnd(3) (3) (6) (@

el se
upljl :=i;
weight[i] = wi +w;

| é k

35 36

Self-Adjustment Works

Path Compression Find

I i S/
A VYV
7% = AL
DYNS
I

Example
@ @
At

§ ée

@ @

39

PC-Find(i : index) {
r:=i;
while up[r] # 0 do //find root//
roo=up[r];
if i #£r then //conpress path//
k :=up[i];
while k # r do
up[i] :=r;
i = k;
k := up[k]
return(r)

}

Disjoint Union / Find

with Weighted Union and PC

38

« Worst case time complexity for a W-
Union is O(1) and for a PC-Find is
O(log n).

* Time complexity for m = n operations on
n elements is O(m log* n) where log* n
IS a very slow growing function.

> log * n < 7 for all reasonable n. Essentially
constant time per operation!

40

Amortized Complexity

Find Solutions

» For disjoint union / find with weighted
union and path compression.
> average time per operation is essentially a
constant.
> worst case time for a PC-Find is O(log n).
« An individual operation can be costly,
but over time the average cost per
operation is not.

a1

Recursive

Fi nd(up[] : integer array, x : integer) : integer {
[/ precondition: x is in the range 1 to size//

if up[x] = 0 then return x

el se return Find(up,up[x]);

}

Iterative

Fi nd(up[] : integer array, x : integer) : integer {

/I precondition:

X isin the range 1 to size//

while up[x] # 0 do

X = up[X];
return x;

}

42

