
Disjoint Union / Find

CSE 373
Data Structures

Unit 14

Reading: Chapter 8
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Equivalence Relations

• A relation R is defined on set S if for 
every pair of elements a, b∈S, a R b is 
either true or false. 

• An equivalence relation is a relation R 
that satisfies the 3 properties:
› Reflexive: a R a for all a∈S
› Symmetric: a R b iff b R a; for all a,b∈S
› Transitive: a R b and b R c implies a R c
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Equivalence Classes

• Given an equivalence relation R, decide 
whether a pair of elements a,b∈S is 
such that a R b.

• The equivalence class of an element a
is the subset  of S of all elements 
related to a. 

• Equivalence classes are disjoint sets
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Dynamic Equivalence 
Problem

• Starting with each element in a singleton set,  
and an equivalence relation, build the 
equivalence classes

• Requires two operations:
› Find the equivalence class (set) of a given 

element
› Union of two sets

• It is a dynamic (on-line) problem because the 
sets change during the operations and Find 
must be able to cope!
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Disjoint Union - Find

• Maintain a set of disjoint sets.
› {3,5,7} , {4,2,8}, {9}, {1,6}

• Each set has a unique name, one of its 
members
› {3,5,7} , {4,2,8}, {9}, {1,6}
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Union

• Union(x,y) – take the union of two sets 
named x and y
› {3,5,7} , {4,2,8}, {9}, {1,6}

› Union(5,1)
{3,5,7,1,6}, {4,2,8}, {9}, 
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Find

• Find(x) – return the name of the set 
containing x.
› {3,5,7,1,6}, {4,2,8}, {9}, 

› Find(1) = 5
› Find(4) = 8
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An Application

• Build a  random maze by erasing edges.



9

An Application (ct’d)

• Pick Start and End

Start

End
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An Application (ct’d)

• Repeatedly pick random edges to delete.

Start

End
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Desired Properties

• None of the boundary is deleted
• Every cell is reachable from every other 

cell.
• There are no cycles – no cell can reach 

itself by a path unless it retraces some 
part of the path.
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A Cycle (we don’t want that)

Start

End
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A Good Solution

Start

End
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Good Solution : A Hidden 
Tree

Start

End
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Number the Cells

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets S ={ {1}, {2}, {3}, {4},… {36} }  each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 60 edges total.
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Basic Algorithm

• S = set of sets of connected cells
• E = set of edges

While there is more than one set in S
pick a random edge (x,y) 
u := Find(x);  v := Find(y);
if u  ≠ v then

Union(u,v)  //knock down the wall between the cells (cells in                 
.       Remove (x,y) from E //the same set are connected)

• If u=v there is already a path between x and y
• All remaining members of E form the maze
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Example Step

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32
33,34,35,36}

Pick (8,14)
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Example
S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Find(8) = 7
Find(14) = 20

S
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Union(7,20)
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Example

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19

14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Pick (19,20)
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Example at the End

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,3,4,5,6,7,… 36}

E
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Up-Tree for DU/F

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state

Roots are the names of each set.
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Find Operation

• Find(x) follow x to the root and return 
the root

1

2

3

45

6

7

Find(6) = 7
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Union Operation

• Union(i,j) - assuming i and j roots, point i 
to j.

1

2

3

45

6

7

Union(1,7)
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Simple Implementation

• Array of indices (Up[i] is parent of i)

1

2

3

45

6

7

0 1 0 7 7 5 0

1   2    3    4   5    6   7

up

Up [x] = 0 means
x is a root.
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Union

Union(up[] : integer array, x,y : integer) : {
//precondition: x and y are roots//
Up[x] := y
}

Constant Time!
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Find

• Design Find operator
› Recursive version
› Iterative version

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
???
}
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A Bad Case

1 2 3 n…

1

2 3 n

Union(1,2)

1

2

3 n

Union(2,3)

Union(n-1,n)

…

…

1

2

3

n

:
:

Find(1)   n steps!!
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Weighted Union

• Weighted Union (weight = number of nodes)
› Always point the smaller tree to the root of the 

larger tree

1

2

3

45

6

7

W-Union(1,7)

2 41
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Example Again

1 2 3 n

1

2 3 n

Union(1,2)

1

2

3

n

Union(2,3)

Union(n-1,n)

…

… :
:

1

2

3 n

…

Find(1)   constant time
…

30

Analysis of Weighted Union

• With weighted union an up-tree of height h 
has weight at least 2h.

• Proof by induction
› Basis: h = 0. The up-tree has one node, 20 = 1
› Inductive step: Assume true for all h’ < h.

h-1
Minimum weight
up-tree of height h
formed by
weighted unions

T1 T2

T W(T1) > W(T2) > 2h-1

Weighted
union

Induction
hypothesis

W(T) > 2h-1 + 2h-1 = 2h
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Analysis of Weighted Union

• Let T be an up-tree of weight n formed 
by weighted union.  Let h be its height.

• n > 2h

• log2 n > h
• Find(x) in tree T takes O(log n) time.
• Can we do better?
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Worst Case for Weighted 
Union

n/2 Weighted Unions

n/4 Weighted Unions
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Example of Worst Cast (cont’)
After n -1 = n/2 + n/4 + …+ 1 Weighted Unions

Find
If there are n = 2k nodes then the longest
path from leaf to root has length k.

log2n
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Elegant Array Implementation

1

2

3

45

6

7
2 41

0
2

1 0
1

7 7 5 0
4

1   2   3  4  5   6   7  
up

weight

Can save the extra 
space by storing the 
complement of weight 
in the space reserved 
for the root
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Weighted Union

W-Union(i,j : index){
//i and j are roots//
wi := weight[i];
wj := weight[j];
if wi < wj then
up[i] := j;
weight[j] := wi + wj;

else
up[j] :=i;
weight[i] := wi +wj;

}
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Path Compression

• On a Find operation point all the nodes on the 
search path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910
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Self-Adjustment Works

PC-Find(x)

x
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Path Compression Find

PC-Find(i : index) {
r := i;
while up[r] ≠ 0 do //find root//
r := up[r];

if i ≠ r then  //compress path//
k := up[i];
while k ≠ r do
up[i] := r;
i := k;
k := up[k]

return(r)
}

39

Example

1

2

3

45

6

7

8 9

10i
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Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-
Union is O(1) and for a PC-Find is   
O(log n). 

• Time complexity for m ≥ n operations on 
n elements is O(m log* n)  where log* n 
is a very slow growing function. 
› log * n < 7 for all reasonable n. Essentially 

constant time per operation!
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Amortized Complexity

• For disjoint union / find with weighted 
union and path compression. 
› average time per operation is essentially a 

constant.

› worst case time for a PC-Find is O(log n).

• An individual operation can be costly, 
but over time the average cost per 
operation is not.  
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Find Solutions

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
if up[x] = 0 then return x
else return Find(up,up[x]);
}

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
while up[x] ≠ 0 do
x := up[x];

return x;
}

Recursive

Iterative


