Disjoint Union / Find

CSE 373 Data Structures Unit 14

Reading: Chapter 8

Equivalence Relations

- A relation R is defined on set S if for every pair of elements a, b∈ S, a R b is either true or false.
- An equivalence relation is a relation R that satisfies the 3 properties:
 -) Reflexive: a R a for all $a \in S$
 - > Symmetric: a R b iff b R a; for all $a,b \in S$
 - > Transitive: a R b and b R c implies a R c

2

Equivalence Classes

- Given an equivalence relation R, decide whether a pair of elements a,b∈ S is such that a R b.
- The equivalence class of an element a is the subset of S of all elements related to a.
- Equivalence classes are disjoint sets

Dynamic Equivalence Problem

- Starting with each element in a singleton set, and an equivalence relation, build the equivalence classes
- Requires two operations:
 - Find the equivalence class (set) of a given element
 - Union of two sets
- It is a dynamic (on-line) problem because the sets change during the operations and Find must be able to cope!

Disjoint Union - Find

- Maintain a set of disjoint sets.
 > {3,5,7}, {4,2,8}, {9}, {1,6}
- Each set has a unique name, one of its members
 - → {3,<u>5</u>,7} , {4,2,<u>8</u>}, {<u>9</u>}, {<u>1</u>,6}

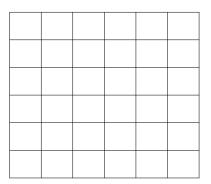
Union

- Union(x,y) take the union of two sets named x and y
 - > {3,<u>5</u>,7} , {4,2,<u>8</u>}, {<u>9</u>}, {<u>1</u>,6}
 - > Union(5,1)
 - $\{3, \underline{5}, 7, 1, 6\}, \{4, 2, \underline{8}\}, \{\underline{9}\},\$

Find

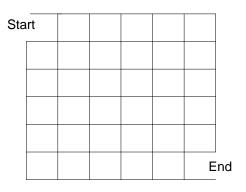
- Find(x) return the name of the set containing x.
 - > {3,<u>5</u>,7,1,6}, {4,2,<u>8</u>}, {<u>9</u>},
 - > Find(1) = 5
 - > Find(4) = 8

• Build a random maze by erasing edges.

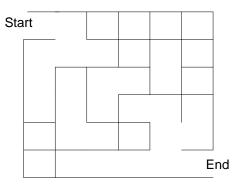


5

• Pick Start and End



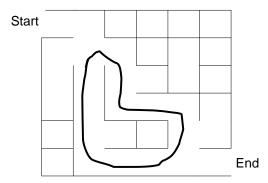
• Repeatedly pick random edges to delete.



Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles no cell can reach itself by a path unless it retraces some part of the path.

A Cycle (we don't want that)



13

14

Number the Cells

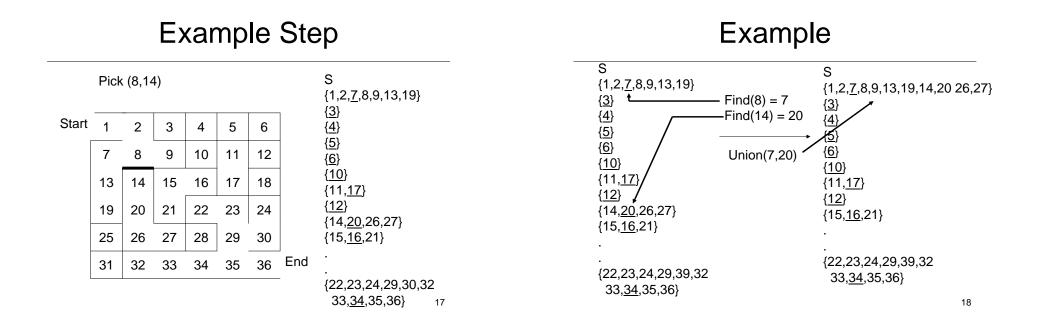
We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} } each cell is unto itself. We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

0					
2	3	4	5	6	
8	9	10	11	12	
14	15	16	17	18	
20	21	22	23	24	
26	27	28	29	30	
32	33	34	35	36	End
	8 14 20 26	8 9 14 15 20 21 26 27	8 9 10 14 15 16 20 21 22 26 27 28	8 9 10 11 14 15 16 17 20 21 22 23 26 27 28 29	8 9 10 11 12 14 15 16 17 18 20 21 22 23 24 26 27 28 29 30

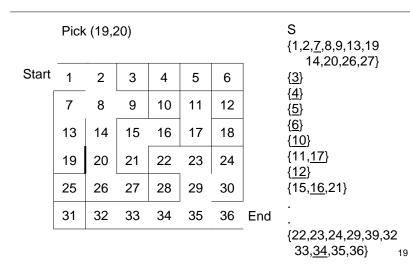
Basic Algorithm

- S = set of sets of connected cells
- E = set of edges

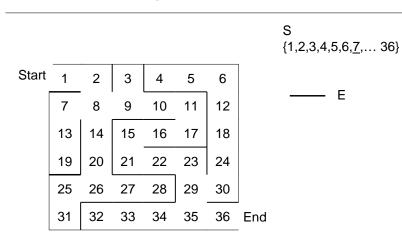
While there is more than one set in S pick a random edge (x,y)
u := Find(x); v := Find(y);
if u ≠ v then Union(u,v) //knock down the wall between the cells (cells in
Remove (x,y) from E //the same set are connected)
If u=v there is already a path between x and y
All remaining members of E form the maze

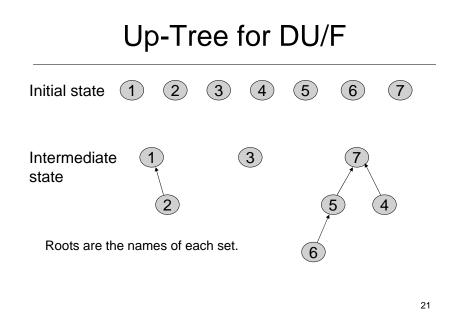


Example

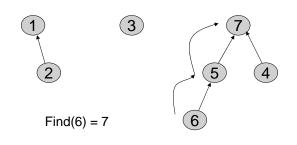


Example at the End



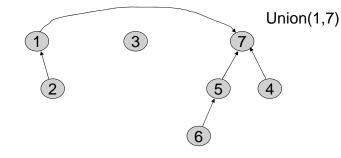


 Find(x) follow x to the root and return the root



Union Operation

 Union(i,j) - assuming i and j roots, point i to j.



Simple Implementation

• Array of indices (Up[i] is parent of i) $\begin{array}{c}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
up & 0 & 1 & 0 & 7 & 7 & 5 & 0
\end{array}$ $\begin{array}{c}
Up [x] = 0 \text{ means} \\
x \text{ is a root.} \\
\hline
1 \\
2
\end{array}$

Union

Union(up[] : integer array, x,y : integer) : {
 //precondition: x and y are roots//
 Up[x] := y
}

Constant Time!

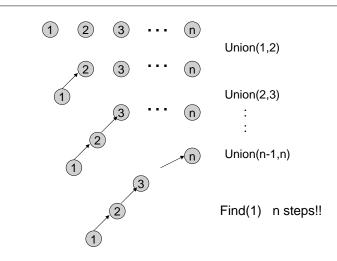
- Design Find operator
 - Recursive version
 - Iterative version

Find(up[] : integer array, x : integer) : integer {
 //precondition: x is in the range 1 to size//
 ???
}

25

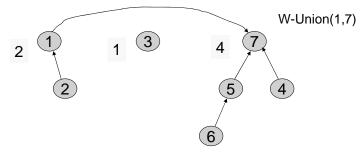
26

A Bad Case

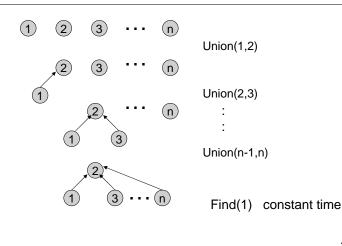


Weighted Union

- Weighted Union (weight = number of nodes)
 - Always point the smaller tree to the root of the larger tree



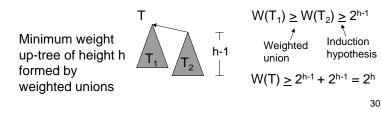
Example Again



29

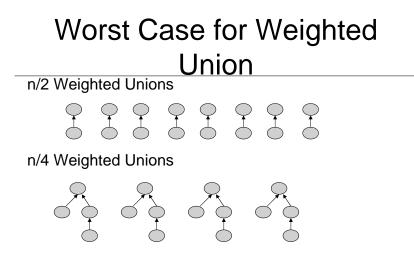
Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2^h.
- Proof by induction
 - > Basis: h = 0. The up-tree has one node, $2^0 = 1$
 - > Inductive step: Assume true for all h' < h.



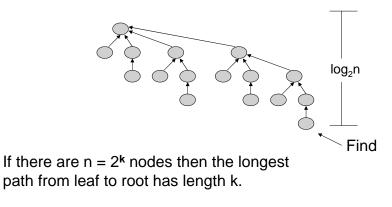
Analysis of Weighted Union

- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- n <u>></u> 2^h
- $\log_2 n \ge h$
- Find(x) in tree T takes O(log n) time.
- Can we do better?



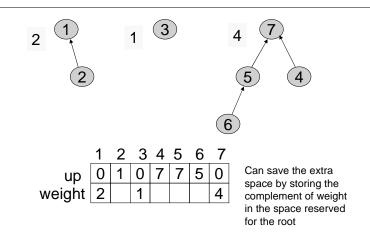
Example of Worst Cast (cont')

After n - 1 = n/2 + n/4 + ... + 1 Weighted Unions



33

Elegant Array Implementation



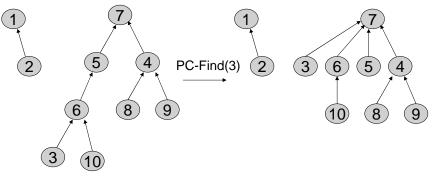
34

Weighted Union

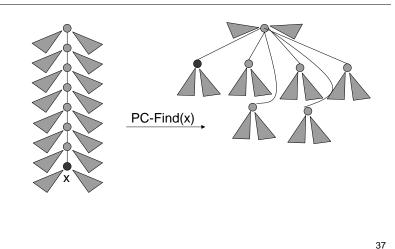
```
W-Union(i,j : index){
//i and j are roots//
wi := weight[i];
wj := weight[j];
if wi < wj then
    up[i] := j;
    weight[j] := wi + wj;
else
    up[j] :=i;
    weight[i] := wi +wj;
}</pre>
```

Path Compression

• On a Find operation point all the nodes on the search path directly to the root.



Self-Adjustment Works

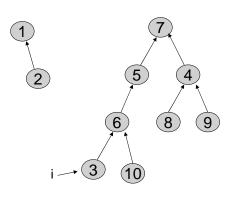


Path Compression Find

```
PC-Find(i : index) {
  r := i;
  while up[r] ≠ 0 do //find root//
   r := up[r];
  if i ≠ r then //compress path//
   k := up[i];
  while k ≠ r do
   up[i] := r;
   i := k;
   k := up[k]
  return(r)
}
```

38

Example



Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is O(1) and for a PC-Find is O(log n).
- Time complexity for m ≥ n operations on n elements is O(m log* n) where log* n is a very slow growing function.
 - > log * n < 7 for all reasonable n. Essentially constant time per operation!

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - > worst case time for a PC-Find is O(log n).
- An individual operation can be costly, but over time the average cost per operation is not.

41

Find Solutions

Recursive

```
Find(up[] : integer array, x : integer) : integer {
   //precondition: x is in the range 1 to size//
   if up[x] = 0 then return x
   else return Find(up,up[x]);
}
```

Iterative

```
Find(up[] : integer array, x : integer) : integer {
   //precondition: x is in the range 1 to size//
   while up[x] ≠ 0 do
        x := up[x];
   return x;
}
```