Why Do We Need Trees?

Trees
 Lists, Stacks, and Queues are linear
CSE 373 relationships
Data Structures Information often contains hierarchical
Unit 6 relationships
> File directories or folders
Reading: Chapter 4.1-4.3 > Moves in a game
> Hierarchies in organizations
Tree Jargon More Tree Jargon
* Length of a path = number depth=0,
. VOC:; i ed of edges height = 2
* nodes ana edges _ \
. * Depth of a node N = length
leaves ° of path from rootto N Q
« parent, children, siblings * Height of node N = length of
« ancestors, descendants Q a @ longest path from N to a leaf @ Q @\

» Depth of tree = depth of depth=1,

* subtrees e ® deepest node e ® height =0
7

i root depth = 2,
height, depth height=0

Definition and Tree Trivia

* Atree is a set of nodes,i.e., either
> it's an empty set of nodes, or
> it has one node called the root from which zero or
more trees (subtrees) descend

* Two nodes in a tree have at most one path
between them

» Can a non-zero path from node N reach node
N again?
No. Trees can never have cycles (loops)

Implementation of Trees

* One possible pointer-based Implementation
> tree nodes with value and a pointer to each child
> but how many pointers should we allocate space for?

» A more flexible pointer-based implementation
> 1St Child / Next Sibling List Representation

> Each node has 2 pointers: one to its first child and one to
next sibling

> Can handle arbitrary number of children

Paths

» Atree with N nodes always has N-1

edges (prove it by induction)

Base Case: N=1

Inductive Hypothesis: Suppose that a tree with
N=k nodes always has k-1 edges.

Induction: Suppose N=k+1...

Arbitrary Branching

G A

2 2
® © © |

e ® Data

FirstChild| [| Sibling

_m,\\

Nodes
of same
depth

Binary Trees

» Every node has at most two children
> Most popular tree in computer science

» Given N nodes, what is the minimum depth

of a binary tree?

Minimum depth vs node count

Binary Trees

« At depth d, you can have N = 2d to 29+1-1
nodes

e minimum depth d is ©(log N)
T(n) = ©(f(n)) means
T(n) = O(f(n)) and f(n) = O(T(n)),
i.e. T(n) and f(n) have the same
growth rate

d=2

N=22 to 23-1 (i.e, 4 to 7 nodes)

v

At depth O (the root) there is one node.
> At depth 1, there are two nodes.
At depth k, there are 2k nodes

At depth d (tree depth), there might be 1 to 24
nodes.

v

v

N is the total so

1+2+...4201D+] < N < 1+2+...+ 20@-1)4+ 2d

== 2¢<N<2*'-1 impliesd_ =|logN|

10

Maximum depth vs node
count

* What is the maximum depth of a binary
tree?
> Degenerate case: Tree is a linked list!
> Maximum depth = N-1

» Goal: Would like to keep depth at
around log N to get better performance
than linked list for operations like Find

12

A degenerate tree

A linked list (each node has
one children).

13

Traversing Binary Trees

* Preorder: Node, then Children (starting

with the left) recursively +*+ ABCD 0
e

 Inorder: Left child recursively, Node, ®6©

"4
Right child recursively A+B*C +D @

» Postorder: Children recursively, then Node
AB+C*D+

15

Traversing Binary Trees

* The definitions of the traversals are recursive
definitions. For example:
> Visit the root

> Visit the left subtree (i.e., visit the tree whose root
is the left child) and do this recursively

> Visit the right subtree (i.e., visit the tree whose root
is the right child) and do this recursively

* Traversal definitions can be extended to
general (non-binary) trees

14

Binary Search Trees

» Binary search trees are binary trees in
which (9)
> all values in the node’s left subtree
are less than node value a @

> all values in the node’s right subtree
are greater than node value

» Operations:
> Find, FindMin, FindMax, Insert, Delete @ @

What happens when we traverse the tree

in inorder? @

Operations on Binary Search

Trees

How would you implement these? Q

> Recursive definition of binary
search trees allows recursive routines

> Call by reference helps too a @
FindMin
FindMax
Find @
Insert
Delete
17
Find

Find(T : tree pointer, x : element): tree pointer {
case {

T=null : return null;

T.data = x : return T;

T.data > x : return Find(T.left,x);

T.data < x : return Find(T.right,x)

19

Binary SearchTree

B—1 9
P »

10 97
\ \
AN

left | [| right

18

FindMin

« Design recursive FindMin operation that
returns the smallest element in a binary
search tree.

> FindMn(T : tree pointer) : tree pointer {
/1 precondition: T is not null //
???

}

20

Insert Operation Insert 95

e Insert(T: tree, X elenent)
> Do a “Find” operation for X @ @
> If Xis found update @

(no need to insert) — @ @
> Else, “Find” stops at a — ? @ @

NULL pointer @ @
> Insert Node with X there @ @ @

« Example: Insert 95 &)

21 22

Insert Done with call-by- Delete Operation

reference

Insert(T : reference tree pointer, x : elenent) : integer { ¢ Delete is a bit tr|ck|erWhy’)
if T=null then

T:=newtree; T.data := x; return 1;//the links to

Jrhelins o » Suppose you want to delete 10

case .

T.data = x : return O; This is wh b * Strategy'

T.data > x : return Insert(T.left, x); IS IS wnhere call by ;

T.data < x : return Insert(T.right, x); reference makesa > Find 10 o
endcase difference. > Delete the node containing 10

}

Problem: When you delete a node,

Advantage of reference parameter is that the call has what do you replace it by?

the original pointer not a copy.

23 24

Delete Operation

* Problem: When you delete a node,
what do you replace it by? @
e Solution:
> If it has no children, by NULL @ @

> Ifit has 1 child, by that child

> If it has 2 children, by the node with e @
the smallest value in its right subtree
(the successor of the node)

1)
1)

25

Delete “24” - One child
Find 24 node @

(@) - ® | X pomr
the 24 node and

replace the
pointer to it with
a pointer to its
child

27

Delete “5” -

No children

Find 5 node
@ &) @ &)
O@ - Z%i () Tenfree
NULL the
p0|nter to It

Delete “10” - two children

Find 10,
Copy the smallest
value in

right subtree
into the node

a @ — a @ Then (recursivgly)
Delete node with

smallest value

in right subtree
Note: it cannot
have two children
(Why?)

28

Then Delete “11” - One child FindMin Solution

FindMn(T : tree pointer) : tree pointer {
/1 precondition: T is not null //

if T.left = null return T

else return FindMn(T.left)

}

Remember
11 node

a @ Then Free
the 11 node and

replace the
pointer to it with
a pointer to its
child

29

