Trees

CSE 373 Data Structures Unit 6

Reading: Chapter 4.1-4.3

Why Do We Need Trees?

- Lists, Stacks, and Queues are linear relationships
- Information often contains hierarchical relationships
	- › File directories or folders
	- › Moves in a game
	- › Hierarchies in organizations

Tree Jargon

More Tree Jargon

- **Length** of ^a path ⁼ number of edges
- **Depth** of ^a node N ⁼ length of path from root to N
- **Height** of node N ⁼ length of longest path from N to ^a leaf
- **Depth of tree** ⁼ depth of deepest node
- **Height of tree** ⁼ height of root

Definition and Tree Trivia

Paths

- A tree is ^a set of nodes,i.e., either
	- › it's an empty set of nodes, or
	- \rightarrow it has one node called the root from which zero or more trees (subtrees) descend
- Two nodes in ^a tree have at most one path between them
- Can ^a non-zero path from node N reach node N again?

No. Trees can never have cycles (loops)

• A tree with N nodes always has N-1 edges (prove it by induction)

Base Case: N=1

Inductive Hypothesis: Suppose that ^a tree with N=k nodes always has k-1 edges.

Induction: Suppose N=k+1…

Implementation of Trees

- One possible pointer-based Implementation
	- \rightarrow tree nodes with value and a pointer to each child
	- › but how many pointers should we allocate space for?
- A more flexible pointer-based implementation
	- › 1st Child / Next Sibling List Representation
	- \rightarrow Each node has 2 pointers: one to its first child and one to next sibling
	- › Can handle arbitrary number of children

Arbitrary Branching

5

Binary Trees

- Every node has at most two children › Most popular tree in computer science
- Given N nodes, what is the minimum depth of a binary tree?

2

4

1

3

4) (5) (6) (7

Minimum depth vs node count

- At depth d, you can have $N = 2^d$ to 2^{d+1} -1 nodes
- minimum depth d is Θ(log N)

Binary Trees

- › At depth 0 (the root) there is one node.
- › At depth 1, there are two nodes.
- \rightarrow At depth k, there are 2^k nodes
- \rightarrow At depth d (tree depth), there might be 1 to 2d nodes.

N is the total so

$$
1+2+...+2^{(d-1)}+1 \le N \le 1+2+...+2^{(d-1)}+2^d
$$

 $2^\text{\tiny cl}$ \leq N \leq 2 $^{\text{\tiny d+1}}$ -1 $\,$ implies $\mathrm{d}_{\sf min}$ $=$ $\lfloor \log_{\! \! \! \ell} \hspace{0.5pt} N \rfloor$

10

Maximum depth vs node count

- What is the maximum depth of ^a binary tree?
	- › Degenerate case: Tree is ^a linked list!
	- \rightarrow Maximum depth = N-1
- Goal: Would like to keep depth at around log N to get better performance than linked list for operations like Find

A degenerate tree

Traversing Binary Trees

- The definitions of the traversals are recursive definitions. For example:
	- › Visit the root
	- › Visit the left subtree (i.e., visit the tree whose root is the left child) and do this recursively
	- › Visit the right subtree (i.e., visit the tree whose root is the right child) and do this recursively
- Traversal definitions can be extended to general (non-binary) trees

14

Traversing Binary Trees

- Preorder: Node, then Children (starting with the left) recursively ⁺ * ⁺ ^A ^B ^C ^D
- Inorder: Left child recursively, Node, Right child recursively $A + B * C + D$ AB+
- Postorder: Children recursively, then Node A B ⁺ C * D ⁺

Binary Search Trees

- • Binary search trees are binary trees in which
	- \rightarrow all values in the node's left subtree are less than node value
	- \rightarrow all values in the node's right subtree are greater than node value
- Operations:
	- › Find, FindMin, FindMax, Insert, Delete
- What happens when we traverse the tree in inorder?

*

+

 $\mathbf C$

 $\overline{\mathbf{D}}$

Operations on Binary Search Trees

- How would you implement these?
	- \rightarrow Recursive definition of binary search trees allows recursive routines
	- › Call by reference helps too
- FindMin
- FindMax
- Find
- Insert
- Delete

5

Binary SearchTree

Find

Find(T : tree pointer, $x :$ element): tree pointer { case { T ⁼ null : return null; T.data ⁼ ^x : return T; T.data > ^x : return Find(T.left,x); T.data < ^x : return Find(T.right,x) } }

FindMin

• Design recursive FindMin operation that returns the smallest element in ^a binary search tree.

```
› FindMin(T : tree pointer) : tree pointer {
// precondition: T is not null //
???}
```
Insert Operation

- • **Insert(T: tree, X: element)**
	- › Do ^a "Find" operation for X
	- \rightarrow If X is found à update (no need to insert)
	- › Else, "Find" stops at ^a NULL pointer
	- › Insert Node with X there
- Example: Insert 95

21

Insert Done with call-byreference

Insert(T : reference tree pointer, ^x : element) : integer { if T ⁼ null then T := new tree; T.data := x; return 1;//the links to //children are null caseT.data ⁼ ^x : return 0; T.data > ^x : return Insert(**T.left**, x); T.data < ^x : return Insert(**T.right**, x); endcase} This is where call by reference makes a difference.

Advantage of reference parameter is that the call has the original pointer not ^a copy.

Delete Operation

- Delete is ^a bit trickier…Why?
- Suppose you want to delete 10
- Strategy:
	- › Find 10
	- › Delete the node containing 10
- Problem: When you delete ^a node, what do you replace it by?

94

24

17

 (97)

10

 (11)

 $\left(5\right)$

Delete "24" - One child

Delete "10" - two children

Then Delete "11" - One child

FindMin Solution

FindMin(T : tree pointer) : tree pointer { // precondition: ^T is not null // if T.left ⁼ null return T else return FindMin(T.left) }