
Trees

CSE 373
Data Structures

Unit 6

Reading: Chapter 4.1-4.3
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Why Do We Need Trees?

• Lists, Stacks, and Queues are linear 
relationships

• Information often contains hierarchical 
relationships 
› File directories or folders 
› Moves in a game
› Hierarchies in organizations 
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Tree Jargon

• root
• nodes and edges
• leaves

• parent, children, siblings
• ancestors,  descendants

• subtrees

• path, path length
• height, depth
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More Tree Jargon
• Length of a path = number 

of edges
• Depth of a node N = length 

of path from root to N
• Height of node N = length of 

longest path from N to a leaf
• Depth of tree = depth of 

deepest node
• Height of tree = height of 

root
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Definition and Tree Trivia

• A tree is a set of nodes,i.e., either 
› it’s an empty set of nodes, or
› it has one node called the root from which zero or 

more trees  (subtrees) descend

• Two nodes in a tree have at most one path 
between them

• Can a non-zero path from node N reach node 
N again?

No. Trees can never have cycles (loops)
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Paths

• A tree with N nodes always has N-1 
edges (prove it by induction)

Base Case: N=1

Inductive Hypothesis:  Suppose that a tree with 
N=k nodes always has k-1 edges.

Induction:  Suppose N=k+1…
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Implementation of Trees

• One possible pointer-based Implementation
› tree nodes with value and a pointer to each child
› but how many pointers should we allocate space for?

• A more flexible pointer-based implementation
› 1st Child / Next Sibling List Representation
› Each node has 2 pointers: one to its first child and one to 

next sibling
› Can handle arbitrary number of children
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Arbitrary Branching
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Binary Trees

• Every node has at most two children
› Most popular tree in computer science

• Given N nodes, what is the minimum depth 
of a binary tree? 
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Binary Trees

› At depth 0 (the root) there is one node.

› At depth 1, there are two nodes.
› At depth k, there are 2k nodes

› At depth d (tree depth), there might be 1 to 2d

nodes. 

� �Nlogd  implies   12N2 2min
1dd =−≤≤ +

N is the total so 

1+2+…+2(d-1)+1 � N � 1+2+…+ 2(d-1)+ 2d
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Minimum depth vs node count

• At depth d, you can have N = 2d to 2d+1-1 
nodes 

• minimum depth d is Θ(log N)
1
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T(n) = Θ(f(n)) means
T(n) = O(f(n)) and  f(n) = O(T(n)),
i.e. T(n) and f(n) have the same 
growth rate

d=2
N=22 to 23-1 (i.e, 4 to 7 nodes)
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Maximum depth vs node 
count

• What is the maximum depth of a binary 
tree?
› Degenerate case: Tree is a linked list!

› Maximum depth = N-1

• Goal: Would like to keep depth at 
around log N to get better performance 
than linked list for operations like Find
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A degenerate tree
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A linked list (each node has 
one children).
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Traversing Binary Trees

• The definitions of the traversals are recursive 
definitions. For example:
› Visit the root
› Visit the left subtree (i.e., visit the tree whose root 

is the left child) and do this recursively
› Visit the right subtree (i.e., visit the tree whose root 

is the right child) and do this recursively

• Traversal definitions can be extended to 
general (non-binary) trees 
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Traversing Binary Trees

• Preorder: Node, then Children (starting 
with the left) recursively + * + A B C D

• Inorder: Left child recursively, Node, 
Right child recursively A + B * C + D

• Postorder: Children recursively, then Node
A B + C * D +

A
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Binary Search Trees

• Binary search trees are binary trees in 
which 
› all values in the node’s left subtree

are less than node value
› all values in the node’s right subtree

are greater than node value
• Operations:

› Find, FindMin, FindMax, Insert, Delete

What happens when we traverse the tree 
in inorder?
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Operations on Binary Search 
Trees

• How would you implement these?
› Recursive definition of binary 

search trees allows recursive routines
› Call by reference helps too

• FindMin
• FindMax
• Find
• Insert
• Delete
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Binary SearchTree
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Find

Fi nd( T :  t r ee poi nt er ,  x :  el ement ) :  t r ee poi nt er  {
case {

T = nul l  :  r et ur n nul l ;      
T. dat a = x :  r et ur n T;
T. dat a > x :  r et ur n Fi nd( T. l ef t , x) ;
T. dat a < x :  r et ur n Fi nd( T. r i ght , x)

}
}
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FindMin

• Design recursive FindMin operation that 
returns the smallest element in a binary 
search tree.
› Fi ndMi n( T :  t r ee poi nt er )  :  t r ee poi nt er  {

/ /  pr econdi t i on:  T i s not  nul l  / /
???
}
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Insert Operation

• Insert(T: tree, X: element) 

› Do a “Find” operation for X
› If X is found à update     

(no need to insert)
› Else, “Find” stops at a 

NULL pointer

› Insert Node with X there

• Example: Insert 95
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Insert 95
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Insert Done with call-by-
reference

I nser t ( T :  r ef er ence t r ee poi nt er ,  x  :  el ement )  :  i nt eger {
i f  T = nul l  t hen

T : = new t r ee;  T. dat a : = x;  r et ur n 1; / / t he l i nks t o           
/ / chi l dr en ar e nul l

case
T. dat a = x  :  r et ur n 0;
T. dat a > x  :  r et ur n I nser t ( T.left,  x) ;
T. dat a < x  :  r et ur n I nser t ( T.right,  x) ;

endcase
}

Advantage of reference parameter is that the call has
the original pointer not a copy.

This is where call by
reference makes a
difference.
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Delete Operation

• Delete is a bit trickier…Why?

• Suppose you want to delete 10
• Strategy:

› Find 10
› Delete the node containing 10

• Problem: When you delete a node,
what do you replace it by?
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Delete Operation
• Problem: When you delete a node,

what do you replace it by?
• Solution:

› If it has no children, by NULL
› If it has 1 child, by that child
› If it has 2 children, by the node with

the smallest value in its right subtree
(the successor of the node)
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Delete “5” - No children

Find 5 node

Then Free
the 5 node and 
NULL the 
pointer to it
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Delete “24” - One child

Find 24 node

Then Free
the 24 node and 
replace the 
pointer to it with
a pointer to its
child
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Delete “10” - two children
Find 10,
Copy the smallest
value in
right subtree
into the node

Then (recursively)
Delete node with 
smallest value
in right subtree
Note:  it cannot
have two children
(why?)
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Then Delete “11” - One child

Remember
11 node

Then Free
the 11 node and 
replace the 
pointer to it with
a pointer to its
child
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FindMin Solution

Fi ndMi n( T :  t r ee poi nt er )  :  t r ee poi nt er  {
/ /  pr econdi t i on:  T i s not  nul l  / /
i f  T. l ef t  = nul l  r et ur n T
el se r et ur n Fi ndMi n( T. l ef t )
}


