
Trees

CSE 373
Data Structures

Unit 6

Reading: Chapter 4.1-4.3

2

Why Do We Need Trees?

• Lists, Stacks, and Queues are linear
relationships

• Information often contains hierarchical
relationships
› File directories or folders
› Moves in a game
› Hierarchies in organizations

3

Tree Jargon

• root
• nodes and edges
• leaves

• parent, children, siblings
• ancestors, descendants

• subtrees

• path, path length
• height, depth

A

B C D

E F

4

More Tree Jargon
• Length of a path = number

of edges
• Depth of a node N = length

of path from root to N
• Height of node N = length of

longest path from N to a leaf
• Depth of tree = depth of

deepest node
• Height of tree = height of

root

A

B C D

E F

depth=0,
height = 2

depth = 2,
height=0

depth=1,
height =0

5

Definition and Tree Trivia

• A tree is a set of nodes,i.e., either
› it’s an empty set of nodes, or
› it has one node called the root from which zero or

more trees (subtrees) descend

• Two nodes in a tree have at most one path
between them

• Can a non-zero path from node N reach node
N again?

No. Trees can never have cycles (loops)

6

Paths

• A tree with N nodes always has N-1
edges (prove it by induction)

Base Case: N=1

Inductive Hypothesis: Suppose that a tree with
N=k nodes always has k-1 edges.

Induction: Suppose N=k+1…

7

Implementation of Trees

• One possible pointer-based Implementation
› tree nodes with value and a pointer to each child
› but how many pointers should we allocate space for?

• A more flexible pointer-based implementation
› 1st Child / Next Sibling List Representation
› Each node has 2 pointers: one to its first child and one to

next sibling
› Can handle arbitrary number of children

8

Arbitrary Branching

A

B C D

E F

A

B C D

E F

Data

FirstChild Sibling

Nodes
of same
depth

9

Binary Trees

• Every node has at most two children
› Most popular tree in computer science

• Given N nodes, what is the minimum depth
of a binary tree?

1

2 3

6 74 5

10

Binary Trees

› At depth 0 (the root) there is one node.

› At depth 1, there are two nodes.
› At depth k, there are 2k nodes

› At depth d (tree depth), there might be 1 to 2d

nodes.

� �Nlogd implies 12N2 2min
1dd =−≤≤ +

N is the total so

1+2+…+2(d-1)+1 � N � 1+2+…+ 2(d-1)+ 2d

11

Minimum depth vs node count

• At depth d, you can have N = 2d to 2d+1-1
nodes

• minimum depth d is Θ(log N)
1

2 3

6 74 5

T(n) = Θ(f(n)) means
T(n) = O(f(n)) and f(n) = O(T(n)),
i.e. T(n) and f(n) have the same
growth rate

d=2
N=22 to 23-1 (i.e, 4 to 7 nodes)

12

Maximum depth vs node
count

• What is the maximum depth of a binary
tree?
› Degenerate case: Tree is a linked list!

› Maximum depth = N-1

• Goal: Would like to keep depth at
around log N to get better performance
than linked list for operations like Find

13

A degenerate tree

1

5

2

3

4

7

6

A linked list (each node has
one children).

14

Traversing Binary Trees

• The definitions of the traversals are recursive
definitions. For example:
› Visit the root
› Visit the left subtree (i.e., visit the tree whose root

is the left child) and do this recursively
› Visit the right subtree (i.e., visit the tree whose root

is the right child) and do this recursively

• Traversal definitions can be extended to
general (non-binary) trees

15

Traversing Binary Trees

• Preorder: Node, then Children (starting
with the left) recursively + * + A B C D

• Inorder: Left child recursively, Node,
Right child recursively A + B * C + D

• Postorder: Children recursively, then Node
A B + C * D +

A

*

B

C

D

+

+

16

Binary Search Trees

• Binary search trees are binary trees in
which
› all values in the node’s left subtree

are less than node value
› all values in the node’s right subtree

are greater than node value
• Operations:

› Find, FindMin, FindMax, Insert, Delete

What happens when we traverse the tree
in inorder?

9

5

10

96 99

94

97

17

Operations on Binary Search
Trees

• How would you implement these?
› Recursive definition of binary

search trees allows recursive routines
› Call by reference helps too

• FindMin
• FindMax
• Find
• Insert
• Delete

9

5

10

96 99

94

97

18

Binary SearchTree
9

5

10

96 99

94

97

data

left right

9

5 94

10 97

96 99

19

Find

Fi nd(T : t r ee poi nt er , x : el ement) : t r ee poi nt er {
case {

T = nul l : r et ur n nul l ;
T. dat a = x : r et ur n T;
T. dat a > x : r et ur n Fi nd(T. l ef t , x) ;
T. dat a < x : r et ur n Fi nd(T. r i ght , x)

}
}

20

FindMin

• Design recursive FindMin operation that
returns the smallest element in a binary
search tree.
› Fi ndMi n(T : t r ee poi nt er) : t r ee poi nt er {

/ / pr econdi t i on: T i s not nul l / /
???
}

21

Insert Operation

• Insert(T: tree, X: element)

› Do a “Find” operation for X
› If X is found à update

(no need to insert)
› Else, “Find” stops at a

NULL pointer

› Insert Node with X there

• Example: Insert 95

10

96 99

94

97
?

22

Insert 95

10

96 99

94

97
10

96 99

94

97

95

23

Insert Done with call-by-
reference

I nser t (T : r ef er ence t r ee poi nt er , x : el ement) : i nt eger {
i f T = nul l t hen

T : = new t r ee; T. dat a : = x; r et ur n 1; / / t he l i nks t o
/ / chi l dr en ar e nul l

case
T. dat a = x : r et ur n 0;
T. dat a > x : r et ur n I nser t (T.left, x) ;
T. dat a < x : r et ur n I nser t (T.right, x) ;

endcase
}

Advantage of reference parameter is that the call has
the original pointer not a copy.

This is where call by
reference makes a
difference.

24

Delete Operation

• Delete is a bit trickier…Why?

• Suppose you want to delete 10
• Strategy:

› Find 10
› Delete the node containing 10

• Problem: When you delete a node,
what do you replace it by?

94

10 97

5 24

11

17

25

Delete Operation
• Problem: When you delete a node,

what do you replace it by?
• Solution:

› If it has no children, by NULL
› If it has 1 child, by that child
› If it has 2 children, by the node with

the smallest value in its right subtree
(the successor of the node)

94

10 97

5 24

11

17

26

Delete “5” - No children

Find 5 node

Then Free
the 5 node and
NULL the
pointer to it

94

10 97

5 24

11

17

94

10 97

5 24

11

17

27

Delete “24” - One child

Find 24 node

Then Free
the 24 node and
replace the
pointer to it with
a pointer to its
child

94

10 97

5 24

11

17

94

10 97

5 24

11

17

28

Delete “10” - two children
Find 10,
Copy the smallest
value in
right subtree
into the node

Then (recursively)
Delete node with
smallest value
in right subtree
Note: it cannot
have two children
(why?)

94

10 97

5 24

11

17

94

11 97

5 24

11

17

29

Then Delete “11” - One child

Remember
11 node

Then Free
the 11 node and
replace the
pointer to it with
a pointer to its
child

94

11 97

5 24

11

17

94

11 97

5 24

11

17

30

FindMin Solution

Fi ndMi n(T : t r ee poi nt er) : t r ee poi nt er {
/ / pr econdi t i on: T i s not nul l / /
i f T. l ef t = nul l r et ur n T
el se r et ur n Fi ndMi n(T. l ef t)
}

