
Splay Trees

CSE 373
Data Structures

Unit 8

Reading: Sections 4.5-4.6

2

Self adjusting Trees

• Ordinary binary search trees have no balance
conditions
› what you get from insertion order is it

• Balanced trees like AVL trees enforce a
balance condition when nodes change
› tree is always balanced after an insert or delete

• Self-adjusting trees get reorganized over time
as nodes are accessed
› Tree adjusts after insert, delete, or find

3

Splay Trees

• Splay trees are tree structures that:
› Are not perfectly balanced all the time
› Data most recently accessed is near the root.

(principle of locality; 80-20 “rule”)

• The procedure:
› After node X is accessed, perform “splaying”

operations to bring X to the root of the tree.
› Do this in a way that leaves the tree more

balanced as a whole

4

• Let X be a non-root node with ≥ 2 ancestors.
• P is its parent node.
• G is its grandparent node.

P

G

X

G

P

X

G

P

X

G

P

X

Splay Tree Terminology

5

Zig-Zig and Zig-Zag

4

G 5

1 P zig-zag

G

P 5

X 2

zig-zig

X

Parent and grandparent
in same direction.

Parent and grandparent
in different directions.

6

1. Helpful if nodes contain a parent pointer.

2. When X is accessed, apply one of six rotation routines.
• Single Rotations (X has a P (the root) but no G)

ZigFromLeft, ZigFromRight

• Double Rotations (X has both a P and a G)
ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

Splay Tree Operations

parent

rightleft
element

7

Zig at depth 1 (root)
• “Zig” is just a single rotation, as in an AVL tree
• Let R be the node that was accessed (e.g. using

Find)

• ZigFromLeft moves R to the top →faster access
next time

ZigFromLeft

root

8

Zig at depth 1

• Suppose Q is now accessed using Find

• ZigFromRight moves Q back to the top

ZigFromRight

root

9

Zig-Zag operation

• “Zig-Zag” consists of two rotations of the
opposite direction (assume R is the node that
was accessed)

(ZigFromRight) (ZigFromLeft)

ZigZagFromLeft

10

Zig-Zig operation

• “Zig-Zig” consists of two single rotations
of the same direction (R is the node that
was accessed)

(ZigFromLeft) (ZigFromLeft)

ZigZigFromLeft

11

Decreasing depth -
"autobalance"

Find(T) Find(R)

12

Splay Tree Insert and Delete

• Insert x
› Insert x as normal then splay x to root.

• Delete x
› Splay x to root and remove it. (note: the node does

not have to be a leaf or single child node like in
BST delete.) Two trees remain, right subtree and
left subtree.

› Splay the max in the left subtree to the root
› Attach the right subtree to the new root of the left

subtree.

13

Example Insert

• Inserting in order 1,2,3,…,8
• Without self-adjustment

1

2

3

4

5

6

7

8

O(n2) time for n Insert

14

With Self-Adjustment

1

2

1 2

1

ZigFromRight

2

1 3

ZigFromRight
2

1

3

1

2

3

15

With Self-Adjustment

ZigFromRight2

1

34
4

2

1

3

4

Each Insert takes O(1) time therefore O(n) time for n Insert!!

16

Example Deletion
10

155

201382

96

10

15

5

2013

8

2 96

splay

10

15

5

2013

2 96

remove

10

15

5

2013

2 9

6
Splay (zig)

attach

(Zig-Zag)delete(8)

17

Analysis of Splay Trees

• Splay trees tend to be balanced
› M operations takes time O(M log N) for M > N

operations on N items. (proof is difficult)
› Amortized O(log n) time.

• Splay trees have good “locality” properties
› Recently accessed items are near the root of

the tree.
› Items near an accessed one are pulled toward

the root.

18

Summary of Search Trees
• Problem with Binary Search Trees: Must keep tree balanced to

allow fast access to stored items

• AVL trees: Insert/Delete operations keep tree balanced
• Splay trees: Repeated Find operations produce balanced trees
• Multi-way search trees (e.g. B-Trees):

› More than two children per node allows shallow trees; all
leaves are at the same depth.

› Keeping tree balanced at all times.
› Excellent for indexes in database systems.

