
Splay Trees

CSE 373
Data Structures

Unit 8

Reading: Sections 4.5-4.6
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Self adjusting Trees

• Ordinary binary search trees have no balance 
conditions
› what you get from insertion order is it

• Balanced trees like AVL trees enforce a 
balance condition when nodes change
› tree is always balanced after an insert or delete

• Self-adjusting trees get reorganized over time 
as nodes are accessed
› Tree adjusts after insert, delete, or find
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Splay Trees

• Splay trees are tree structures that:
› Are not perfectly balanced all the time
› Data most recently accessed is near the root. 

(principle of locality; 80-20 “rule”)

• The procedure:
› After node X is accessed, perform “splaying” 

operations to bring X to the root of the tree.
› Do this in a way that leaves the tree more 

balanced as a whole
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• Let X be a non-root node with ≥ 2 ancestors.
• P is its parent node.
• G is its grandparent node.
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Splay Tree Terminology
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Zig-Zig and Zig-Zag
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Parent and grandparent
in same direction.

Parent and grandparent
in different directions.
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1. Helpful if nodes contain a parent pointer.

2. When X is accessed, apply one of six rotation routines.
• Single Rotations (X has a P (the root) but no G)

ZigFromLeft, ZigFromRight

• Double Rotations (X has both a P and a G)
ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

Splay Tree Operations

parent

rightleft
element
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Zig at depth 1 (root)
• “Zig” is just a single rotation, as in an AVL tree
• Let R be the node that was accessed (e.g. using 

Find)

• ZigFromLeft moves R to the top →faster access 
next time

ZigFromLeft

root
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Zig at depth 1

• Suppose Q is now accessed using Find

• ZigFromRight moves Q back to the top

ZigFromRight

root
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Zig-Zag operation

• “Zig-Zag” consists of two rotations of the 
opposite direction (assume R is the node that 
was accessed)

(ZigFromRight) (ZigFromLeft)

ZigZagFromLeft

10

Zig-Zig operation

• “Zig-Zig” consists of two single rotations 
of the same direction (R is the node that 
was accessed)

(ZigFromLeft) (ZigFromLeft)

ZigZigFromLeft
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Decreasing depth -
"autobalance"

Find(T) Find(R)
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Splay Tree Insert and Delete

• Insert x
› Insert x as normal then splay x to root.

• Delete x
› Splay x to root and remove it. (note: the node does 

not have to be a leaf or single child node like in 
BST delete.)  Two trees remain, right subtree and 
left subtree.

› Splay the max in the left subtree to the root
› Attach the right subtree to the new root of the left 

subtree.
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Example Insert

• Inserting in order 1,2,3,…,8
• Without self-adjustment
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With Self-Adjustment
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With Self-Adjustment
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Each Insert takes O(1) time therefore O(n) time for n Insert!!
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Example Deletion
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Analysis of Splay Trees

• Splay trees tend to be balanced
› M operations takes time O(M log N) for M > N 

operations on N items. (proof is difficult)
› Amortized O(log n) time.

• Splay trees have good “locality” properties
› Recently accessed items are near the root of 

the tree.
› Items near an accessed one are pulled toward 

the root.
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Summary of Search Trees
• Problem with Binary Search Trees: Must keep tree balanced to 

allow  fast access to stored items

• AVL trees: Insert/Delete operations keep tree balanced
• Splay trees: Repeated Find operations produce balanced trees
• Multi-way search trees (e.g. B-Trees): 

› More than two children per node allows shallow trees; all 
leaves are at the same depth.

› Keeping tree balanced at all times.
› Excellent for indexes in database systems.


