Applied Algorithm Scenario

DFS, BFS,
Shortest Path Problems
Real world problem
CSE 373 i
Data Structures Abstractly model the problem
Unit 13 l
Find abstract algorithm
Reading: Sections 9.3, 9.6, 10.3.4 |
Adapt to original problem

Broadcasting in a Network Spanning Tree in a Graph

- Network of Routers

- Organize the routers to efficiently
broadcast messages to each other.

. —>
Incoming message
,_,/ * Duplicate and send
to some neighbors.
_X‘\ + Eventually all routers
get the message Vertex = router Spanning tree
Edge = link between routers - Connects all the vertices

Goal: Minimize the number of messages. - No cycles

Spanning Tree Problem Depth First Search Algorithm

* Input: An undirected graph G = (VE). * Recursive marking algorithm

G is connected. * Initially every vertex is unmarked
* Output: T contained in E such that

- (V,T) is a connected graph DFS(i: vertex)

mark i;
for each j adjacent to i do
if j is unmarked then DFS(j)
end{DFS}

- (V,T) has no cycles

Example of Depth First Search Example Step 2
DFS(1) DFS(1)
DFS(2)

Example Step 3

Example Step 5

DFS(1)
DFS(2)
DFS(7)

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)

11

Example Step 4

Example Step 6

DFS(1)
DFS(2)
DFS(7)
DFS(5)

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
DFS(3)

10

12

Example Step 7

Spanning Tree Algorithm

DFS(1)
DFS(2) Main ST(i: vertex)
DFS(7) T := empty set; mark i;
DFS(S) ST(); for each j adjacent to i do
DFS(4) : e
DFS(3) end{Main} if jis ur.\r.nar'ked then
DFS(6) Add {i,j} to T;
ST()):
The addition to DFS | end{ST}
Note that the edges traversed in the depth first
search form a spanning tree.
13 14
Applied Algorithm Scenario Evaluation Step Expanded
Wrong problem : no - New algorithm
Real world problem Algorithm Correct? | _ New model
! | yes - New problem
Wrong model
Abstractly model the problem Choose Data Structure
l Incorrect algorithm
poor performance - unsatisfactory
Find abstract algorithm PO
\ satisfactory - New data structure
| Evaluate - New algorithm
Adapt to original problem Implement - New model

15

16

Correctness of ST Algorithm

* Thereare no cyclesin T
- This is an invariant of the algorithm.

- Each edge added to T goes from a vertex in T
to a vertex not in T.

 If G is connected then eventually every
vertex is marked.

11/.\'\ unmarked

17

Data Structure Step

: no - New algorithm
Algorithm Correct? " - New model
l yes - New problem

Choose Data Structure

unsatisfactory
Performance?
satisfactory - New data structure
- New algorithm

Implement - New model

19

Correctness (cont.)

- If G is connected then so is (V,T)

Data Structure Choice

- Adjacency lists

- Good for sparse graphs

- Supports depth first search
- Adjacency matrix

- Good for dense graphs

- Supports depth first search

18

20

Spanning Tree with Adjacency Lists

Main ST(i: vertex)
G is array of adjacency lists; M[i]:=1;
M[i]:= 0 for all i; v:= G[i];
T is empty:; while (v # null)
Spanning_Tree(1); j i= v.vertex;
end{Main} if (M[j]=0) then
add{i,j} to T;
. . STQ):
M is the marking array v := v.next:
(entry for each vertex). end{ST}

Node of linked list:
vertex| | | next

Performance Step

Algorithm Correct?

| yes

Choose Data Structure

Performance?

no - New algorithm
- New model
- New problem

unsatisfactory

21

Performance of ST Algorithm

Implement

satisfactory

- New data structure
- New algorithm
- New model

22

Other Uses of Depth First Search

* nvertices and m edges

+ Connected graph (m = n-1)

+ Space complexity O(m)

- Time complexity O(m) - for each edge we

perform O(1) operations in each of the two
endpoints.

23

* Popularized by Hopcroft and Tarjan 1973
+ Connected components
« Strongly connected components in

directed graphs

- Topological sorting of a acyclic directed

graphs

* Maze solving

24

ST using Breadth First Search 1

- Uses a queue to order search

Queue =1

25

Breadth First Search 3

Queue =6,5,7,3

27

Breadth First Search 2

Queue =2,6,5

26

Breadth First Search 4

Queue =5,7,3

28

Breadth First Search 5

Queue =7,3,4

29

Breadth First Search 7

Queue =4

31

Breadth First Search 6

Queue =34

Breadth First Search 8

Queue =

30

32

Spanning Tree using Breadth First
Search (BFS)

Initialize T fo be empty;
Initialize Q to be empty:
Enqueue(1,Q) and mark 1;
while (Q is not empty) do
i := Dequeue(Q);
for each j adjacent to i do
if j is not marked then
add{i,j} to T;
mark j:
Enqueue(j,Q):

33

Shortest-path Algorithms

+ Scenario: One router creates messages (source).
Each message needs to reach other routers (one
or more) along the shortest possible path.

- Abstraction: given a vertex s, find the shortest
path from s o any other vertex of 6.

* Other shortest path problems:

- Different edges have different lengths (delay,
cost, etfc.)

- All-pair shortest path problem: no specific
source.

35

Depth First vs Breadth First

* Depth First
- Stack or recursion
- Many applications
* Breadth First
- Queue (recursion no help)

- Can be used to find shortest paths from
the start vertex

- Both are O(|E|)

Using BFS for Shortest-path

Given a vertex s, find the shortest path from s
to any other vertex of 6.

A 'centralized' version of BFS:

1. Label vertex s with O.
2. i~0

3. Find all unlabeled vertices adjacent to at least
one vertex labeled i. If none are found, stop.

4. Label all the vertices found in (3) with i + 1.
5. i« i+1landgo to(3).

36

BFS for Shortest Path (i=0)

Vertices whose distance from s is O are labeled.

BFS for Shortest Path (i=2)

Vertices whose distance from s is 2 are labeled.

37

39

BFS for Shortest Path (i=1)

Vertices whose distance from s is 1 are labeled.

BFS for Shortest Path (i=3)

Vertices whose distance from s is 3 are labeled.

In the next iteration we find out that the whole graph
is labeled and we stop.

38

40

The BFS Tree Single-Source Shortest Paths
(Dijkstra's algorithm)

Theorem: Each vertex is

labeled by it its length from s. Using BFS, we solve the problem of finding

shortest path from s to any vertex v.
What if edges have associated costs or distances?
(BFS assumes edge costs areall 1.)

Proof: By induction on the label.

For any v#s, let p(v) be the

. . *+ Assume each edge (u,v) has non-negative weight
vertex that 'discovered' v in BFS. c(u,v).
Then T={(p(v),v)} is a directed spanning tree rooted in * A weight of a path = total weights of all edges on
s, and for each vertex v, the path fromstovin Tisa path.
shortest path from s fo v in 6. + Problem: Find, for each vertex v, a shortest

o I TP minimum weight) path from s fo v.
Note: the ‘centralized’ version is for simplification only. (ght)p

When implemented, we need the queue as before.
) 22

Idea of Dijkstra's Algorithm: Dijkstra's Algorithm
- Maintain: Assumption: c(u,v) = o if (u,v) not in E.
— M[O..n-1] where A(v) is the cost of best path from

s to v found so far, and 1. X(s) < O and for all v #s,
- T, set of vertices v for which A(v) is not yet A(V) oo
known to be optimal. 2. T « V.
* TInitially: 3. Let u be a vertex in T for which A(u)
— A(s) = 0; A(v) = o for all v other than s. i's mnimm
-T=V. 4. For every edge, if vT and

. Tn each step: @W@\@ A(v) = A(u) + c(u,v) then
- remove that vin T with minimum A(v) A(V) <« A(u) + c(u,v).

- update those win T s.t. (v,w) in E and 5. T -T -{u}, if Tis not enpty go to
A(W) > A(v) + c(v,w). step 3.

Dijkstra's Algorithm - Example

Dijkstra's Algorithm - Example

init u=s u=a
s| O O*| O0*
a| o 3 3*
b| o 4 4
c| o 00 6
d (%) 00 00
e| o 0 9
fl| o 8 8

* non-T vertices.

Why is this Algorithm Correct?

+ Theorem: At the termination of the algorithm,
A(v) is the length of the shortest path from s to v
for each vertex v of G.

* Proof: by induction on |V-T].
Inductive hypothesis: Let |V-T|=k.
-Ov in V-T, A(v) is the length of the
shortest path from s to v.

-the vertices in V-T are the k closest
vertices to s.

-Ovin T, A(v) is the length of the
shortest path from s to v that only
goes through vertices in V-T.

Why is this Algorithm Correct?

In class exercise: complete the execution.

- Base case: |V-T|=1, T=V-{s}.

- for every vin V-T, A(v) is the length of
shortest path from s to v.

V' we init A(s) =0.
- the vertices in V-T are the k closest vertices

to s.

v V-T={s}. s is surely the closest to s.

- for every vin T, A(v) is the length of
shortest path from s to v that only goes
through vertices in V-T.

v' At this stage, A(v) = » forallvin V-T.

48

46

The A values of vertices in V-T are correct

and for each such v, the shortest path from s

Yo v only goes through vertices in V-T

- Induction Step: Suppose frue for first k steps.
The SP to the (k+1)' closest vertex, say w,
can go through only vertices in V-T, otherwise,
there would be a closer vertex. Therefore,
when selecting the min, we select the (k+1)s'
closest vertex to s.

Say w is added.

New A value for a vertex x is min of old A
value and A(w) + c(w,x)

49

Dijktra's Algorithm - Run Time Analysis

- Implementation 2: data structure: priority queue

+ Stores set S (in our case, this is T) such that there is
a linear order on key values (in our case the key is the
A value).

Supports operations:

- Insert(x) - insert element with key value x into set.

- FindMin() - return value of smallest element in set.
- DeleteMin() - delete smallest element in set.

and usually:
- Lookup(x), Delete(x)

51

Dijktra's Algorithm - Run Time Analysis

Implementation 1:
- Adjacency lists.
- Anarray for the A values.
Complexity:
In each iteration:
1. Finding a vertex u in T with minimal A
In the whole execution: n+(n-1)+(n-2)+..+1 = O(n?)
2. Updating the A-values of u's neighbors:
In each iteration we check degree(u) values.
The total sum of the degreesin 2m O(m)
All together: O(m+n?)= O(n?) (remember, m<n(n-1))

50

Priority-Queue Implementations

» Priority-Queue can be implemented
such that each of these operations takes
O(log n) time for sets of size n.

Running time of Dijkstra's algorithm:

We need to consider insertions, delete
Mins, lookups, modifying A values.

52

* Running Example:

Running Time of Dijkstra's
Algorithm:

n insertions: O(n log n) time
n deleteMins: O(n log n) time
m lookups: O(m log n) time
m A value mods: O(m log n) time

Running time: O((n + m) log n))

* The O(n?) is better for dense graphs

53

Bellman-Ford algorithm

* How do we implement this algorithm?
* Order the edges: e;, e,, ..., .
+ Perform step 2 by first checking e,, thene,, etc.,

After the first such sweep, go through additional
sweeps, until an entire

e3,4
sweep produces M
el,-3

no improvement. @

@ -

Single-Source Shortest Paths
(Bellman-Ford's algorithm)

+ each edge (u,v) has a weight c(u,v).
* ¢(u,v) might be negative, but there are no negative

cycles.

1. M(s) — O and for every v Zs, A(vV) « oo,
2. As long as there is an edge such that A(v) > A(u) +

c(e) replace A(v) by A(u) + c(e).

For our purposes « is not greater than « + &, even if

kis negative.

BF algorithm - correctness and run
time analysis

* Theorem: if a shortest path from s to v consists

of k edges, then by the end of the k™ sweep v will
have its final label.

+ Proof: induction on k (not here).
- Since k is bounded by |V| (remember, no negative

cycles), step 2 is performed at most |E|0V|
times.

+ Each comparison in step 2 can takes O(1) if the

graph is kept in an Adjacency Matrix (with the
weights) and an array with the A(v) values.

The time complexity of BF is O(|E|0V]).

56

