DFS, BFS, Shortest Path Problems

CSE 373
Data Structures
Unit 13

Reading: Sections 9.3, 9.6, 10.3.4

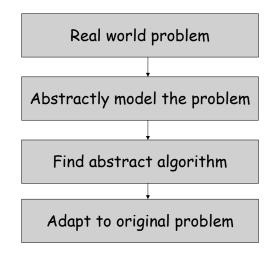
Broadcasting in a Network

- Network of Routers
 - Organize the routers to efficiently broadcast messages to each other.

- Duplicate and send to some neighbors.
- Eventually all routers get the message

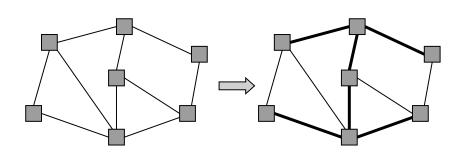
Goal: Minimize the number of messages.

Applied Algorithm Scenario



2

Spanning Tree in a Graph



Vertex = router Edge = link between routers Spanning tree

- Connects all the vertices
- No cycles

Spanning Tree Problem

- Input: An undirected graph G = (V,E).
 G is connected.
- Output: T contained in E such that
 - (V,T) is a connected graph
 - (V,T) has no cycles

Depth First Search Algorithm

- Recursive marking algorithm
- Initially every vertex is unmarked

DFS(i: vertex)
 mark i;
 for each j adjacent to i do
 if j is unmarked then DFS(j)
end{DFS}

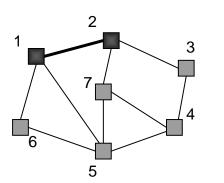
6

Example of Depth First Search

DFS(1)

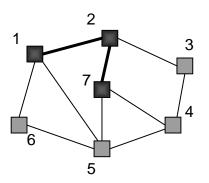
2 3 7 4

Example Step 2



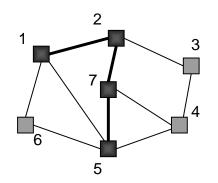
DFS(1) DFS(2)

Example Step 3



DFS(1) DFS(2) DFS(7)

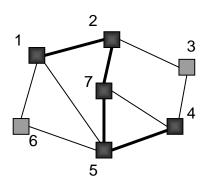
Example Step 4



DFS(1) DFS(2) DFS(7) DFS(5)

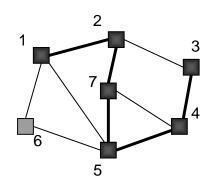
10

Example Step 5



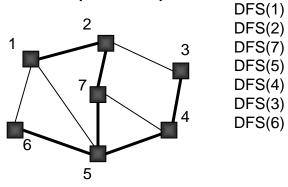
DFS(1) DFS(2) DFS(7) DFS(5) DFS(4) 9

Example Step 6



DFS(1) DFS(2) DFS(7) DFS(5) DFS(4) DFS(3)

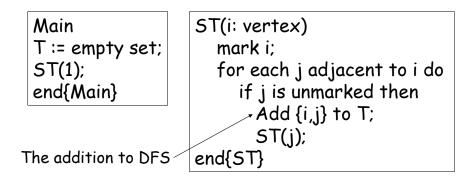
Example Step 7



Note that the edges traversed in the depth first search form a spanning tree.

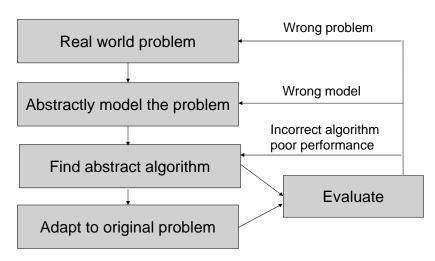
13

Spanning Tree Algorithm

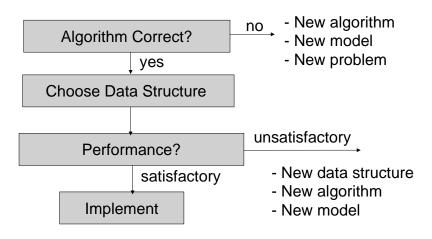


14

Applied Algorithm Scenario



Evaluation Step Expanded



Correctness of ST Algorithm

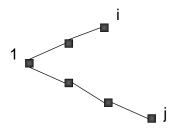
- There are no cycles in T
 - This is an invariant of the algorithm.
 - Each edge added to T goes from a vertex in T to a vertex not in T.
- If G is connected then eventually every vertex is marked.

17

19

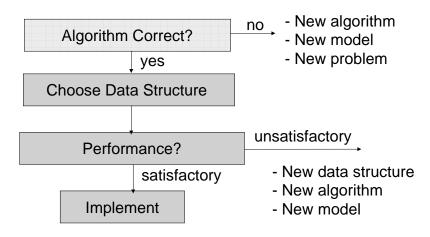
Correctness (cont.)

• If G is connected then so is (V,T)



18

Data Structure Step



Data Structure Choice

- Adjacency lists
 - Good for sparse graphs
 - Supports depth first search
- Adjacency matrix
 - Good for dense graphs
 - Supports depth first search

Spanning Tree with Adjacency Lists

```
Main
G is array of adjacency lists;
M[i] := 0 for all i;
T is empty;
Spanning_Tree(1);
end{Main}
```

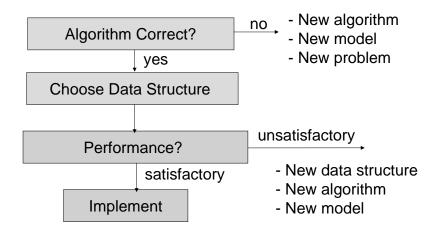
M is the marking array (entry for each vertex).

Node of linked list: vertex next

```
ST(i: vertex)
    M[i] := 1;
    v := G[i];
    while (v ≠ null)
        j := v.vertex;
        if (M[j] = 0) then
            add {i,j} to T;
            ST(j);
        v := v.next;
end{ST}
```

21

Performance Step



22

Performance of ST Algorithm

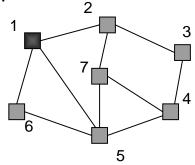
- · n vertices and m edges
- Connected graph ($m \ge n-1$)
- Space complexity O(m)
- Time complexity O(m) for each edge we perform O(1) operations in each of the two endpoints.

Other Uses of Depth First Search

- Popularized by Hopcroft and Tarjan 1973
- Connected components
- Strongly connected components in directed graphs
- Topological sorting of a acyclic directed graphs
- Maze solving

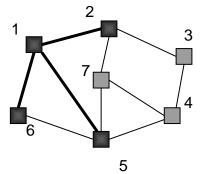
ST using Breadth First Search 1

• Uses a queue to order search



Queue = 1

Breadth First Search 2

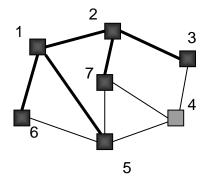


26

Queue = 2,6,5

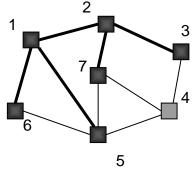
25

Breadth First Search 3



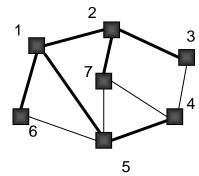
Queue = 6,5,7,3

Breadth First Search 4



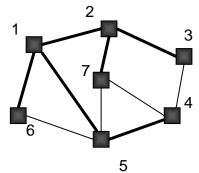
Queue = 5,7,3

Breadth First Search 5



Queue = 7,3,4

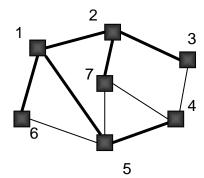
Breadth First Search 6



Queue = 3,4

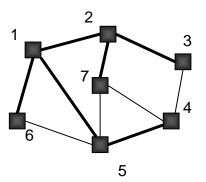
29

Breadth First Search 7



Queue = 4

Breadth First Search 8



Queue =

31

30

Spanning Tree using Breadth First Search (BFS)

```
Initialize T to be empty;
Initialize Q to be empty;
Enqueue(1,Q) and mark 1;
while (Q is not empty) do
    i := Dequeue(Q);
    for each j adjacent to i do
        if j is not marked then
            add {i,j} to T;
            mark j;
            Enqueue(j,Q);
```

Depth First vs Breadth First

- Depth First
 - Stack or recursion
 - Many applications
- Breadth First
 - Queue (recursion no help)
 - Can be used to find shortest paths from the start vertex
- Both are O(|E|)

34

Shortest-path Algorithms

- Scenario: One router creates messages (source).
 Each message needs to reach other routers (one or more) along the shortest possible path.
- Abstraction: given a vertex s, find the shortest path from s to any other vertex of G.
- Other shortest path problems:
 - Different edges have different lengths (delay, cost, etc.)
 - All-pair shortest path problem: no specific source.

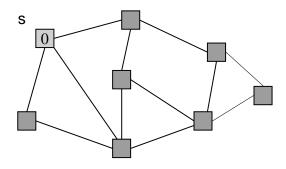
Using BFS for Shortest-path

 Given a vertex s, find the shortest path from s to any other vertex of G.

A 'centralized' version of BFS:

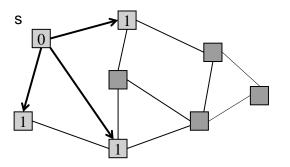
- 1. Label vertex s with 0.
- 2. $i \leftarrow 0$
- 3. Find all unlabeled vertices adjacent to at least one vertex labeled i. If none are found, stop.
- 4. Label all the vertices found in (3) with i + 1.
- 5. $i \leftarrow i + 1$ and go to (3).

BFS for Shortest Path (i=0)



Vertices whose distance from s is 0 are labeled.

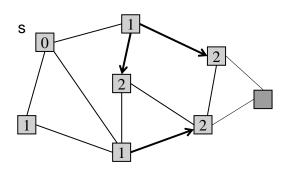
BFS for Shortest Path (i=1)



Vertices whose distance from s is 1 are labeled.

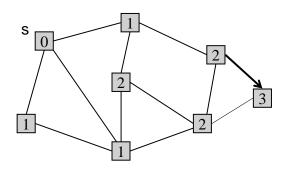
37

BFS for Shortest Path (i=2)



Vertices whose distance from s is 2 are labeled.

BFS for Shortest Path (i=3)



Vertices whose distance from s is 3 are labeled.

In the next iteration we find out that the whole graph is labeled and we stop.

39

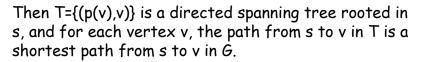
40

The BFS Tree

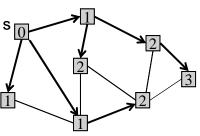
Theorem: Fach vertex is labeled by it its length from s.

Proof: By induction on the label.

For any $v \neq s$, let p(v) be the vertex that 'discovered' v in BFS.



Note: the 'centralized' version is for simplification only. When implemented, we need the queue as before.



Idea of Dijkstra's Algorithm:

· Maintain:

- $\lambda[0..n-1]$ where $\lambda(v)$ is the cost of best path from s to v found so far, and
- T, set of vertices v for which $\lambda(v)$ is not yet known to be optimal.

Initially:

- $\lambda(s)$ = 0; $\lambda(v)$ = ∞ for all v other than s.
- T = V

In each step:

- remove that v in T with minimum $\lambda(v)$
- update those w in Ts.t. (v,w) in E and $\lambda(w) > \lambda(v) + c(v,w)$.

Single-Source Shortest Paths (Dijkstra's algorithm)

- Using BFS, we solve the problem of finding shortest path from s to any vertex v.
- · What if edges have associated costs or distances? (BFS assumes edge costs are all 1.)
- · Assume each edge (u,v) has non-negative weight c(u,v).
- A weight of a path = total weights of all edges on path.
- Problem: Find, for each vertex v, a shortest (minimum weight) path from s to v.

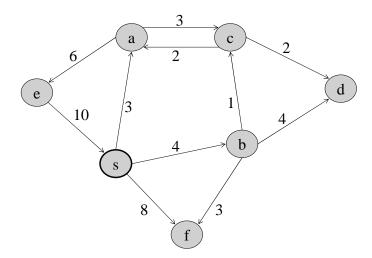
42

Dijkstra's Algorithm

Assumption: $c(u,v) = \infty$ if (u,v) not in E.

- 1. $\lambda(s) \leftarrow 0$ and for all $v \neq s$, $\lambda(v) \leftarrow \infty$.
- 2. $T \leftarrow V$.
- 3. Let u be a vertex in T for which $\lambda(u)$ is minimum.
- 4. For every edge, if $v \in T$ and $\lambda(v) \ge \lambda(u) + c(u,v)$ then $\lambda(v) \leftarrow \lambda(u) + c(u,v)$.
- 5. $T T \{u\}$, if T is not empty go to step 3.

Dijkstra's Algorithm - Example



. .

Why is this Algorithm Correct?

• Theorem: At the termination of the algorithm, $\lambda(v)$ is the length of the shortest path from s to v for each vertex v of G.

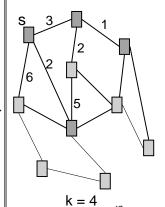
• Proof: by induction on |V-T|.

• Inductive hypothesis: Let |V-T|=k.

 $-\forall v$ in V-T, $\lambda(v)$ is the length of the shortest path from s to v.

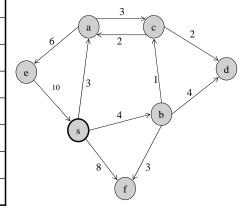
-the vertices in V-T are the k closest vertices to s.

- $\forall v$ in T, $\lambda(v)$ is the length of the shortest path from s to v that only goes through vertices in V-T.



Dijkstra's Algorithm - Example

	init	u=s	u=a
S	0	0 *	0 *
а	8	3	3 *
b	8	4	4
С	∞	∞	6
d	8	8	8
e	8	∞	9
f	8	8	8



In class exercise: complete the execution.

Why is this Algorithm Correct?

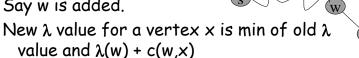
- Base case: |V-T|=1, T=V-{s}.
 - for every v in V-T, $\lambda(v)$ is the length of shortest path from s to v.
 - \checkmark we init $\lambda(s) = 0$.
 - the vertices in V-T are the k closest vertices to s.
 - \checkmark V-T={s}. s is surely the closest to s.
 - for every v in T, $\lambda(v)$ is the length of shortest path from s to v that only goes through vertices in V-T.
 - ✓ At this stage, $\lambda(v) = \infty$ for all v in V-T.

^{*} non-T vertices.

The λ values of vertices in V-T are correct and for each such v, the shortest path from s to v only goes through vertices in V-T

• Induction Step: Suppose true for first k steps. The SP to the (k+1)st closest vertex, say w. can go through only vertices in V-T, otherwise, there would be a closer vertex. Therefore, when selecting the min, we select the (k+1)st closest vertex to s.

Say w is added.



51

Dijktra's Algorithm - Run Time Analysis

- Implementation 2: data structure: priority queue
- Stores set S (in our case, this is T) such that there is a linear order on key values (in our case the key is the λ value).
- Supports operations:
 - Insert(x) insert element with key value x into set.
 - FindMin() return value of smallest element in set.
 - DeleteMin() delete smallest element in set.
- and usually:
 - Lookup(x), Delete(x)

Dijktra's Algorithm - Run Time Analysis

Implementation 1:

- Adjacency lists.
- An array for the λ values.

Complexity:

In each iteration:

- 1. Finding a vertex u in T with minimal λ In the whole execution: $n+(n-1)+(n-2)+...+1 = O(n^2)$
- 2. Updating the λ -values of u's neighbors: In each iteration we check degree(u) values. The total sum of the degrees in $2m \grave{a} O(m)$ All together: $O(m+n^2)=O(n^2)$ (remember, $m \le n(n-1)$)

50

52

Priority-Queue Implementations

 Priority-Queue can be implemented such that each of these operations takes O(log n) time for sets of size n.

Running time of Dijkstra's algorithm: We need to consider insertions, delete Mins, lookups, modifying λ values.

Running Time of Dijkstra's Algorithm:

O(n log n) time n insertions: n deleteMins: O(n log n) time m lookups: O(m log n) time m λ value mods: $O(m \log n)$ time

Running time: $O((n + m) \log n)$

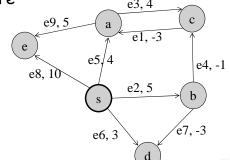
• The $O(n^2)$ is better for dense graphs

Bellman-Ford algorithm

- How do we implement this algorithm?
- Order the edges: e_1 , e_2 , ..., $e_{|F|}$.
- Perform step 2 by first checking e₁, then e₂, etc., After the first such sweep, go through additional sweeps, until an entire

sweep produces no improvement.

Running Example:



53

Single-Source Shortest Paths (Bellman-Ford's algorithm)

- each edge (u,v) has a weight c(u,v).
- · c(u,v) might be negative, but there are no negative cycles.
- 1. $\lambda(s) \leftarrow 0$ and for every $v \neq s$, $\lambda(v) \leftarrow \infty$.
- 2. As long as there is an edge such that $\lambda(v) > \lambda(u) +$ c(e) replace $\lambda(v)$ by $\lambda(u) + c(e)$.

For our purposes ∞ is not greater than $\infty + k$ even if k is negative.

BF algorithm - correctness and run time analysis

- Theorem: if a shortest path from s to v consists of k edges, then by the end of the kth sweep v will have its final label
- Proof: induction on k (not here).
- Since k is bounded by |V| (remember, no negative cycles), step 2 is performed at most |E| |V| times.
- Each comparison in step 2 can takes O(1) if the graph is kept in an Adjacency Matrix (with the weights) and an array with the $\lambda(v)$ values.
- à The time complexity of BF is $O(|E| \cdot |V|)$.