
Sorting (Part II)
CSE 373

Data Structures
Unit 17

Reading: Section 3.2.6 Radix sort           
Section 7.6 Mergesort, Section 7.7, Quicksort, 
Sections 7.8 Lower bound
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Bucket Sort: Sorting Integers
• The goal: sort N numbers, all between 1 to k.

• Example: sort 8 numbers 3,6,7,4,11,3,5,7. All 
between 1 to 12.

• The method: Use an array of k queues. Queue j
(for 1 ≤ j ≤ k) keeps the input numbers whose 
value is j.

• Each queue is denoted ‘a bucket’.

• Scan the list and put the elements in the buckets.
• Output the content of the buckets from 1 to k.
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Bucket Sort: Sorting Integers
• Example: sort 8 numbers 3,6,7,4,11,3,9,7 all 

between 1 to 12.

1 2 3 4 5 6 7 8 9 10 11 12

3
3

4 976 11
7

• Step 1: scan the list and put the elements in 
the queues

• Step 2: concatenate the queues

3,3,4,6,7,7,9,11

• Time complexity: O(n+k).

3
3

4 976 11
7

4

Radix Sort: Sorting integers
• Historically goes back to the 1890 census.

• Radix sort = multi-pass bucket sort of integers 
in the range 0 to BP-1

• Bucket-sort from least significant to most 
significant “digit” (base B)

• Requires P(B+N) operations where P is the 
number of passes (the number of base B digits 
in the largest possible input number).  

• If P and B are constants then O(N) time to sort!
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67
123

38
3

721
9

537
478

Bucket sort 
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses 
B=10 and base 10 
digits for simplicity of 
demonstration.  Larger 
bucket counts should 
be used in an actual 
implementation.

Radix Sort Example

721
3

123
537

67
478

38
9

After 1st pass
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Bucket sort 
by 10’s 
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

Radix Sort Example

721
3

123
537

67
478

38
9

After 1st pass After 2nd pass
3
9

721
123
537

38
67

478
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Bucket sort 
by 100’s 
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

Radix Sort Example

After 2nd pass
3
9

721
123
537

38
67

478

After 3rd pass
3
9

38
67

123
478
537
721

Invariant: after k passes the low order k digits are sorted.
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Properties of Radix Sort

• Not in-place 
› needs lots of auxiliary storage.

• Stable
› equal keys always end up in same bucket in the 

same order.

• Fast
› Time to sort N numbers in the range 0 to BP-1 is 

O(P(B+N))  (P iterations, B buckets in each)
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“Divide and Conquer”

• Very important strategy in computer science:
› Divide problem into smaller parts
› Independently solve the parts
› Combine these solutions to get overall solution

• Idea 1: Divide array into two halves, 
recursively sort left and right halves, then 
merge two halves à Mergesort

• Idea 2 : Partition array into items that are 
“small” and items that are “large”, then 
recursively sort the two sets à Quicksort 
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Mergesort

• Divide it in two at the midpoint
• Conquer each side in turn (by 

recursively sorting)
• Merge two halves together

8 2 9 4 5 3 1 6
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Mergesort Example

8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2 9 4 5 3 1 6

2   8 4    9 3   5 1   6

2   4   8   9 1   3   5   6

1   2   3   4   5   6   8   9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6
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Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

Auxiliary array
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Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 Auxiliary array
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Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 2 3 4 5 Auxiliary array

15

Merging

i j

target

normal

i j

target

Left completed
first

copy
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Merging

i j

target

Right completed
first

first

second
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Merging

Mer ge( A[ ] ,  T[ ]  :  i nt eger  ar r ay,  l ef t ,  r i ght  :  i nt eger )  :  {
mi d,  i ,  j ,  k,  l ,  t ar get  :  i nt eger ;
mi d : = ( r i ght  + l ef t ) / 2;
i  : = l ef t ;  j  : = mi d + 1;  t ar get  : = l ef t ;
whi l e i  < mi d and j  < r i ght  do

i f  A[ i ]  < A[ j ]  t hen T[ t ar get ]  : = A[ i ]  ;  i : = i  + 1;  
el se T[ t ar get ]  : = A[ j ] ;  j  : = j  + 1;

t ar get  : = t ar get  + 1;
i f  i  > mi d t hen / / l ef t  compl et ed/ /

f or  k : = l ef t  t o t ar get - 1 do A[ k]  : = T[ k] ;
i f  j  > r i ght  t hen / / r i ght  compl et ed/ /

k :  = mi d;  l  : = r i ght ;
whi l e k > i  do A[ l ]  : = A[ k] ;  k : = k- 1;  l  : = l - 1;
f or  k : = l ef t  t o t ar get - 1 do A[ k]  : = T[ k] ;

}
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Recursive Mergesort

Mer gesor t ( A[ ] ,  T[ ]  :  i nt eger  ar r ay,  l ef t ,  r i ght  :  i nt eger )  :  {
i f  l ef t  < r i ght  t hen

mi d : = ( l ef t  + r i ght ) / 2;
Mer gesor t ( A, T, l ef t , mi d) ;
Mer gesor t ( A, T, mi d+1, r i ght ) ;
Mer ge( A, T, l ef t , r i ght ) ;

}

Mai nMer gesor t ( A[ 1. . n] :  i nt eger  ar r ay,  n :  i nt eger )  :  {
T[ 1. . n] :  i nt eger  ar r ay;
Mer gesor t [ A, T, 1, n] ;

}
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Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8
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Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Need of a  last copy
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Iterative Mergesort

I t er at i veMer gesor t ( A[ 1. . n] :  i nt eger  ar r ay,  n :  i nt eger )  :  {
/ / pr econdi t i on:  n i s  a power  of  2/ /

i ,  m,  par i t y :  i nt eger ;
T[ 1. . n] :  i nt eger  ar r ay;
m : = 2;  par i t y : = 0;
whi l e m < n do

f or  i  = 1 t o n – m + 1 by m do
i f  par i t y  = 0 t hen Mer ge( A, T, i , i +m- 1) ;

el se Mer ge( T, A, i , i +m- 1) ;
par i t y : = 1 – par i t y ;
m : = 2* m;

i f  par i t y  = 1 t hen 
f or  i  = 1 t o n do A[ i ]  : = T[ i ] ;     

}

How do you handle non-powers of 2?
How can the final copy be avoided?
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Mergesort Analysis

• Let T(N) be the running time for an 
array of N elements

• Mergesort divides array in half and calls 
itself on the two halves. After returning, 
it merges both halves using a temporary 
array

• Each recursive call takes T(N/2) and 
merging takes O(N)
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Mergesort Recurrence 
Relation

• The recurrence relation for T(N) is:

› T(1) < a  
• base case: 1 element array à constant time

› T(N) < 2T(N/2) + bN
• Sorting N elements takes 

– the time to sort the left half 
– plus the time to sort the right half 
– plus an O(N) time to merge the two halves

• T(N) = O(n log n) (see Lecture 5 Slide17)
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Properties of Mergesort

• Not in-place
› Requires an auxiliary array (O(n) extra 

space)

• Stable
› Make sure that left is sent to target on 

equal values.

• Iterative Mergesort reduces copying.
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Quicksort

• Quicksort uses a divide and conquer strategy, 
but does not require the O(N) extra space 
that MergeSort does
› Partition array into left and right sub-arrays

• Choose an element of the array, called pivot
• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

› Recursively sort left and right sub-arrays
› Concatenate left and right sub-arrays in O(1) time
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“Four easy steps”

• To sort an array S
1. If the number of elements in S is 0 or 1, 

then return.  The array is sorted.
2. Pick an element v in S.  This is the pivot

value.

3. Partition S-{v} into two disjoint subsets, S1
= {all values x≤v}, and S2 = {all values x≥v}.

4. Return QuickSort(S1), v, QuickSort(S2)
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The steps of QuickSort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13 8192

43 65
31

5726

750S1 S2
partition S

13 4331 57260

S1
81 927565

S2

QuickSort(S1) and
QuickSort(S2)

13 4331 57260 65 81 9275S Voila!  S is sorted
[Weiss]
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Details, details

• Implementing the actual partitioning
• Picking the pivot

› want a value that will cause |S1| and |S2| to 
be non-zero, and close to equal in size if 
possible

• Dealing with cases where an element 
equals the pivot
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Quicksort Partitioning

• Need to partition the array into left and right sub-
arrays
› the elements in left sub-array are ≤ pivot
› elements in right sub-array are ≥ pivot

• How do the elements get to the correct partition?
› Choose an element from the array as the pivot
› Make one pass through the rest of the array and 

swap as needed to put elements in partitions
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Partitioning:Choosing the pivot

• One implementation (there are others)

› median3 finds pivot and sorts left, center, 
right
• Median3 takes the median of leftmost, middle, and 

rightmost elements
• An alternative is to choose the pivot randomly (need a 

random number generator; “expensive”)
• Another alternative is to choose the first element (but 

can be very bad. Why?)

› Swap pivot with next to last element
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Partitioning in-place

› Set pointers i and j to start and end of array

› Increment i until you hit element A[i] > pivot
› Decrement j until you hit element A[j] < pivot

› Swap A[i] and A[j]
› Repeat until i and j cross

› Swap pivot (at A[N-2]) with A[i]

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

i j

Example

Place the largest at the right
and the smallest at the left.
Swap pivot with next to last element.

Median of 0, 6, 8 is 6. Pivot is 6

Choose the pivot as the median of three
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Example

0 1 4 9 7 3 5 2 6 8

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

i j

Move i to the right up to A[i]  larger than pivot.
Move j to the left up to A[j] smaller than pivot.
Swap

0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 86

ij

0 1 4 2 5 3 6 9 7 8

ij

S1 < pivot pivot S2 > pivot

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 86

i j

0 1 4 2 5 3 7 9 6 8

i j

Example

Cross-over i > j
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Recursive Quicksort

Qui cksor t ( A[ ] :  i nt eger  ar r ay,  l ef t , r i ght  :  i nt eger ) :  {
pi vot i ndex :  i nt eger ;
i f  l ef t  + CUTOFF ≤ r i ght  t hen

pi vot  : = medi an3( A, l ef t , r i ght ) ;
pi vot i ndex : = Par t i t i on( A, l ef t , r i ght - 1, pi vot ) ;
Qui cksor t ( A,  l ef t ,  pi vot i ndex – 1) ;
Qui cksor t ( A,  pi vot i ndex + 1,  r i ght ) ;

el se
I nser t i onsor t ( A, l ef t , r i ght ) ;

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.
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Quicksort Best Case 
Performance

• Algorithm always chooses best pivot 
and splits sub-arrays in half at each 
recursion
› T(0) = T(1) = O(1)

• constant time if 0 or 1 element

› For N > 1, 2 recursive calls plus linear time 
for partitioning

› T(N) = 2T(N/2) + O(N)
• Same recurrence relation as Mergesort

› T(N) = O(N log N)
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Quicksort Worst Case 
Performance

• Algorithm always chooses the worst pivot –
one sub-array is empty at each recursion
› T(N) ≤ a for N ≤ C
› T(N) ≤ T(N-1) + bN
› ≤ T(N-2) + b(N-1) + bN 
› ≤ T(C) + b(C+1)+ … + bN
› ≤ a +b(C + (C+1) + (C+2) +  … + N)
› T(N) = O(N2)

• Fortunately, average case performance is    
O(N log N) (see text for proof)
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Properties of Quicksort

• Not stable because of long distance 
swapping.

• No iterative version (without using a stack).

• Pure quicksort not good for small arrays.
• “In-place”, but uses auxiliary storage because 

of recursive call (O(logn) space).

• O(n log n) average case performance, but 
O(n2) worst case performance.
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Folklore

• “Quicksort is the best in-memory sorting 
algorithm.”

• Truth
› Quicksort uses very few comparisons on 

average.
› Quicksort does have good performance in 

the memory hierarchy.
• Small footprint
• Good locality
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How fast can we sort?

• Heapsort, Mergesort, and Quicksort all 
run in O(N log N) best case running 
time 

• Can we do any better?
• No, if sorting is comparison-based.
• We saw that radix sort is O(N) but it is 

only for integers from bounded-range. 
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Sorting Model

• Recall the basic assumption: we can only 
compare two elements at a time 
› we can only reduce the possible solution space by 

half each time we make a comparison

• Suppose you are given N elements
› Assume no duplicates

• How many possible orderings can you get?
› Example: a, b, c  (N = 3)
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Permutations

• How many possible orderings can you get?
› Example: a, b, c  (N = 3)
› (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)   
› 6 orderings = 3•2•1 = 3!   (i.e., “3 factorial”)
› All the possible permutations of a set of 3 elements

• For N elements
› N choices for the first position, (N-1) choices for the 

second position, …, (2) choices, 1 choice
› N(N-1)(N-2)�(2)(1)= N! possible orderings

43

Decision Tree
a < b < c,  b < c < a,
c < a < b,  a < c < b,
b < a < c,  c < b < a 

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c 
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c 

c < b < a

b < c < a b < a < c 

a < b a > b

a > ca < c

b < c b > c

b < c b > c 

c < a c > a

The leaves contain all the possible orderings of a, b, c
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Decision Trees
• A Decision Tree is a Binary Tree such that:

› Each node = a set of orderings
• i.e., the remaining solution space

› Each edge = 1 comparison
› Each leaf = 1 unique ordering
› How many leaves for N distinct elements?

• N!, i.e., a leaf for each possible ordering

• Only 1 leaf has the ordering that is the 
desired correctly sorted arrangement
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Decision Trees and Sorting
• Every comparison-based sorting algorithm 

corresponds to a decision tree
› Finds correct leaf by choosing edges to follow

• i.e., by making comparisons

› Each decision reduces the possible solution space 
by one half

• Run time is ≥ maximum no. of comparisons
› maximum number of comparisons is the length of 

the longest path in the decision tree, i.e. the height 
of the tree
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Decision Tree Example

a < b < c,  b < c < a,
c < a < b,  a < c < b,
b < a < c,  c < b < a 

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c 
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c 

c < b < a

b < c < a b < a < c 

a < b a > b

a > ca < c

b < c b > c

b < c b > c 

c < a c > a

3! possible orders

actual order
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How many leaves on a tree?

• Suppose you have a binary tree of height d . 
How many leaves can the tree have?
› d = 1 à at most 2 leaves, 
› d = 2 à at most 4 leaves, etc.
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Lower bound on Height

• A binary tree of height d has at most 2d leaves
› depth d = 1 à 2 leaves, d = 2 à 4 leaves, etc.
› Can prove by induction

• Number of leaves, L < 2d

• Height d > log2 L 

• The decision tree has N! leaves

• So the decision tree has height d ≥ log2(N!)
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log(N!) is Ω(NlogN)
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select just the
first N/2 terms

each of the selected
terms is ≥ logN/2

nennn )/(2! π≈
Sterling’s formula

50

Summary of Sorting

• Sorting choices:
› O(N2) – Bubblesort, Insertion Sort 
› O(N log N) average case running time:

• Heapsort: In-place, not stable.
• Mergesort: O(N) extra space, stable.
• Quicksort: claimed fastest in practice but, O(N2) worst 

case. Needs extra storage for recursion. Not stable.

› Run time of any comparison-based sorting 
algorithm is Ω(N log N)

› O(N) – Radix Sort: fast and stable.  Not 
comparison based. Not in-place. 


