Sorting (Part Il)

CSE 373
Data Structures
Unit 17

Reading: Section 3.2.6 Radix sort
Section 7.6 Mergesort, Section 7.7, Quicksort,
Sections 7.8 Lower bound

Bucket Sort: Sorting Integers

Bucket Sort: Sorting Integers

The goal: sort N numbers, all between 1 to k.

Example: sort 8 numbers 3,6,7,4,11,3,5,7. All
between 1 to 12.

The method: Use an array of k queues. Queue j
(for 1 <j < k) keeps the input numbers whose
value is j.

Each queue is denoted ‘a bucket'.
Scan the list and put the elements in the buckets.
Output the content of the buckets from 1 to k.

Radix Sort: Sorting integers

« Example: sort 8 numbers 3,6,7,4,11,3,9,7 all
between 1 to 12,

« Step 1: scan the list and put the elements in
the queues

(1213456 7]8]9]10[11]12]
@ o]

» Step 2: concatenate the queues
e 3,3,4,6,7,7,9,11

—

» Time complexity: O(n+k).

Historically goes back to the 1890 census.

Radix sort = multi-pass bucket sort of integers
in the range 0 to BP-1

Bucket-sort from least significant to most
significant “digit” (base B)
Requires P(B+N) operations where P is the

number of passes (the number of base B digits
in the largest possible input number).

If P and B are constants then O(N) time to sort!

4

Radix Sort Example Radix Sort Example

Input data After 1% pass Bucket sort

Bucket sort 21 After 1st pass by 10's After 2" pass
478 s diai 2
£37 by 1's digit 3 791 digit S

9 o|1|2]|3|4|5|6|7]|8]|09 123 3
721 721 3 537 | 478 9 537 123 e L R e A [

3 = 123 o | | 67 537 03 721 | 537 67 | 478 123
18 3 /| 38 478 67 09 123| 38 537
123 38 478 38
67 9 38 67

- 9 478
This example uses
B=10 and base 10
digits for simplicity of
demonstration. Larger
bucket counts should
be used in an actual
implementation.

5 6

Radix Sort Example Properties of Radix Sort

After 2" pass E;‘cl‘g%t,sort After 31 pass * Not in-place
; digit ; > needs lots of auxiliary storage.
0 1 2 3 4 5 6 7 8 9
gé 003 | 123 478 | 537 721 23 ¢ Stable
i o o > equal keys always end up in same bucket in the
67 067 537 same order.
478 721

* Fast

> Time to sort N numbers in the range 0 to BP-1 is

Invariant: after k passes the low order k digits are sorted. . . .
P g O(P(B+N)) (P iterations, B buckets in each)

“Divide and Conquer”

* Very important strategy in computer science:
> Divide problem into smaller parts
> Independently solve the parts
> Combine these solutions to get overall solution

* |dea 1: Divide array into two halves,
recursively sort left and right halves, then
merge two halves Mergesort

» Idea 2 : Partition array into items that are
“small” and items that are “large”, then
recursively sort the two sets Quicksort

Mergesort Example

Mergesort

Divide — T
o 829 4 5316
Divide — T N
Divide 82 9 4 5 3 16
ivi 7\ N N
lelement 8 2 9 4 5 3 1 6
Merge 7 N/ N/ N/
% o'g 4 9 35 16
4 1356
Merge

1234562809

11

I
8/2/9|4(5[3|1|6

* Divide it in two at the midpoint

» Conquer each side in turn (by
recursively sorting)

« Merge two halves together

10

Auxiliary Array

« The merging requires an auxiliary array.

2/4/8|9|1|3|5]|6
/ /

Auxiliary array

12

Auxiliary Array Auxiliary Array

* The merging requires an auxiliary array. * The merging requires an auxiliary array.
2/4|8|9|1|3|5]|6 2/4(8|9|1|3|5|6
/ / / /
1 Auxiliary array 112131als Auxiliary array
/ /
13 14
Merging Merging
first
’X
| /’ /’ | | !’ |
i i normal
| | | secondf i A j -~ Right completed
- ‘ ‘ ‘ first
target e
target
| 7 . /" ‘ Left completed
‘ COpyI ! J ‘ ‘ first
-
target

15 16

Merging

Merge(A[], T[] : integer array, left, right : integer) : {
md, i, j, k, |, target : integer;
md := (right + left)/2;
i :=left; j :=md + 1; target := left;

while i <mdand j < right do
if Ali] < Alj] then T[target] := Ali] ; i:
else T[target] := Alj]l; | =] + 1,
target := target + 1;
if i >md then //left conpleted//
for k :=left to target-1 do A[k] := T[k];
if j >right then //right conpleted//
k : =md; | :=right;
while k >i do A[I] := A[k]; k :=k-1; | :=1-1;
for k :=left to target-1 do A[k] := T[k];

i+ 1

17

lterative Mergesort

[TITITITITITITIT]
P ATATATATATATATAN NN

N N N B
VSN Y

I I I I I
\ 4 \ 4

I I |
\ 4

I I

Merge by 2

Merge by 4

Merge by 8

19

Recursive Mergesort

Mergesort (A[], T[] : integer array, left, right : integer) : {
if left <right then
md:= (left + right)/2;
Mergesort (A T,l eft, md);
Mer gesort (A T, mi d+1, right);
Merge(A T,left,right);
}
Mai nMergesort (A[1..n]: integer array, n : integer) : {
T[1..n]: integer array,;
Mergesort[A T, 1,n];
}
18
lterative Mergesort
(ITITT T T ITTTT T T I T I T IT I TTITTITTITITITIT]
WA W NN WA W W AN N AW AW VY Mergeby 1
L T 1 T T T T T T T T [T T T T"]
VSN NS NV S Mergeby 2
I [[[[[[[|
\ v \ v \ v \ ¥ Mergeby4
I v [7 I Y I 7 IMergebyS
I v I 7 IMergebylG
I |
Need of a last copy +
I |
20

Iterative Mergesort

Mergesort Analysis

IterativeMergesort (Al 1..n]: integer array, n : integer) : {
/Il precondition: n is a power of 2//
i, m parity : integer;
T[1..n]: integer array;
m:= 2; parity := 0;
while m< n do
for i =1ton-m+ 1by mdo
if parity = 0 then Merge(A T,i,i+m1);
el se Merge(T,Ai,i+m1l);
parity := 1 — parity;
m:= 2*m
if parity = 1 then
for i =1 tondo Ali] :=T[i];
}

How do you handle non-powers of 2?

How can the final copy be avoided?
21

Mergesort Recurrence
Relation

* Let T(N) be the running time for an

array of N elements

« Mergesort divides array in half and calls

itself on the two halves. After returning,
it merges both halves using a temporary
array

« Each recursive call takes T(N/2) and

merging takes O(N)

22

Properties of Mergesort

* The recurrence relation for T(N) is:
>»T(l)<a
» base case: 1 element array constant time
> T(N) < 2T(N/2) + bN
» Sorting N elements takes
— the time to sort the left half

— plus the time to sort the right half
— plus an O(N) time to merge the two halves

° T(N) = O(n Iog n) (see Lecture 5 Slidel7)

23

* Not in-place

> Requires an auxiliary array (O(n) extra
space)

» Stable

> Make sure that left is sent to target on
equal values.

* |terative Mergesort reduces copying.

24

Quicksort

* Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space
that MergeSort does

> Partition array into left and right sub-arrays
» Choose an element of the array, called pivot
« the elements in left sub-array are all less than pivot
» elements in right sub-array are all greater than pivot

> Recursively sort left and right sub-arrays
> Concatenate left and right sub-arrays in O(1) time

25

The steps of QuickSort

select pivot value

L

% partition S
i

s, s,

QuickSort(S,;) and

QuickSort(S,)

U

S Voilal Sissorted
[Weiss]

27

“Four easy steps”

 To sortan array S

1. If the number of elements in Sis 0 or 1,
then return. The array is sorted.

2. Pick an element vin S. This is the pivot
value.

3. Partition S-{v} into two disjoint subsets, S;
= {all values x<v}, and S, = {all values x=v}.

4. Return QuickSort(S,), v, QuickSort(S,)

26

Detalils, detalls

» Implementing the actual partitioning
» Picking the pivot
> want a value that will cause |S,| and |S,| to

be non-zero, and close to equal in size if
possible

» Dealing with cases where an element
equals the pivot

28

Quicksort Partitioning

Need to partition the array into left and right sub-
arrays

> the elements in left sub-array are < pivot

> elements in right sub-array are > pivot

How do the elements get to the correct partition?
> Choose an element from the array as the pivot

> Make one pass through the rest of the array and
swap as needed to put elements in partitions

29

Partitioning in-place

v

Set pointers i and j to start and end of array

> Increment i until you hit element A[i] > pivot

Decrement j until you hit element AJ[j] < pivot
Swap AJi] and AJj]

Repeat until i and j cross

Swap pivot (at A[N-2]) with A[i]

v

v

v

v

31

Partitioning:Choosing the pivot

* One implementation (there are others)

> median3 finds pivot and sorts left, center,
right
« Median3 takes the median of leftmost, middle, and
rightmost elements

¢ An alternative is to choose the pivot randomly (need a
random number generator; “expensive”)

« Another alternative is to choose the first element (but
can be very bad. Why?)

> Swap pivot with next to last element

30

Example

Choose the pivot as the median of three
0 1 2 3 4 5 6 7 8 9

Bl [«]o[of=]s]-][6]

Median of O, 6, 8 is 6. Pivot is 6
DHBAREEROD

i i

Place the largest at the right

and the smallest at the left.

Swap pivot with next to last element.

annRRBRACE
o[: ol [>[=]= &
IBRDEERNOL
(o [« [l 7 [+ [[sf@ ¢

Move i to the right up to A[i] larger than pivot.
Move j to the left up to A[j] smaller than pivot.
Swap

33

Recursive Quicksort

Quicksort(A[]: integer array, left,right : integer): {
pi votindex : integer;
if left + CUTOFF < right then
pivot := nedian3(A left,right);
pivotindex := Partition(A left,right-1,pivot);
Qui cksort (A, left, pivotindex — 1);
Qui cksort (A, pivotindex + 1, right);
el se
Insertionsort (A left,right);

}

Don't use quicksort for small arrays.
CUTOFF =10 is reasonable.

35

~

S, <pivot pivot s > pivot

Quicksort Best Case
Performance

» Algorithm always chooses best pivot
and splits sub-arrays in half at each
recursion
> T(0) =T(1) =0O(2)

» constant time if 0 or 1 element
> For N > 1, 2 recursive calls plus linear time
for partitioning
> T(N) = 2T(N/2) + O(N)
» Same recurrence relation as Mergesort

> T(N) = O(N log N)

36

Quicksort Worst Case
Performance

Properties of Quicksort

» Algorithm always chooses the worst pivot —
one sub-array is empty at each recursion
>» TIN)saforN<C
> T(N) < T(N-1) + bN
> < T(N-2) + b(N-1) + bN
> < T(C) + b(C+1)+ ... + bN
> <a+b(C + (C+1) + (C+2) + ... + N)
> T(N) = O(N?)
» Fortunately, average case performance is
O(N log N) (see text for proof)

Folklore

37

Not stable because of long distance
swapping.

No iterative version (without using a stack).
Pure quicksort not good for small arrays.

“In-place”, but uses auxiliary storage because
of recursive call (O(logn) space).

O(n log n) average case performance, but
O(n?) worst case performance.

38

How fast can we sort?

* “Quicksort is the best in-memory sorting

algorithm.”

e Truth

> Quicksort uses very few comparisons on
average.

> Quicksort does have good performance in

the memory hierarchy.
» Small footprint
» Good locality

39

Heapsort, Mergesort, and Quicksort all
run in O(N log N) best case running
time

Can we do any better?

No, if sorting is comparison-based.

We saw that radix sort is O(N) but it is
only for integers from bounded-range.

40

Sorting Model

* Recall the basic assumption: we can only
compare two elements at a time

> we can only reduce the possible solution space by
half each time we make a comparison

» Suppose you are given N elements
> Assume no duplicates

* How many possible orderings can you get?
> Example: a, b,c (N=3)

a1

Decision Tree

a<b<c, b<c<a,
c<a<h, a<c<b,
b<a<c, c<b<a

a<b<c “/EZL ;;B\\‘ b<c<a
c<a<b b<a<c
a<c<b c<b<a

a<5//\\5>c b<s//\\5>c

a<b<c c<a<b b<c<a c<bh<a

a<c<b b<a<c
b<ﬁ///\\3fc C<jy//\\fja
a<b<c a<c<b b<c<a b<a<c

The leaves contain all the possible orderings of a, b, ¢

43

Permutations

* How many possible orderings can you get?

> Example: a, b,c (N=3)

> (@abc),(ach),(bac),(bca),(cab), (cba)

> 6 orderings = 3.2.1 = 3! (i.e., “3 factorial”)

> All the possible permutations of a set of 3 elements
* For N elements

> N choices for the first position, (N-1) choices for the
second position, ..., (2) choices, 1 choice

> N(N-1)(N-2)---(2)(1)= N! possible orderings

42

Decision Trees

* A Decision Tree is a Binary Tree such that:

> Each node = a set of orderings
« i.e., the remaining solution space

> Each edge = 1 comparison
> Each leaf = 1 unique ordering
> How many leaves for N distinct elements?
* NI, i.e., a leaf for each possible ordering
» Only 1 leaf has the ordering that is the
desired correctly sorted arrangement

a4

Decision Trees and Sorting

» Every comparison-based sorting algorithm
corresponds to a decision tree
> Finds correct leaf by choosing edges to follow

« i.e., by making comparisons
> Each decision reduces the possible solution space
by one half

* Run time is = maximum no. of comparisons
> maximum number of comparisons is the length of

the longest path in the decision tree, i.e. the height
of the tree

How many leaves on a tree?

45

* Suppose you have a binary tree of height d .
How many leaves can the tree have?

>d=1
>d=2

at most 2 leaves,
at most 4 leaves, etc.

¢ o

a7

Decision Tree Example

a<b<c, b<c<a,
c<a<h, a<c<b,
b<a<c, c<b<a

a<b<c ‘4b
c<a<b
a<c<b

a<3//\\3>c

a<bh<c
a<c<b

b<f/ b>c

c<a<b

actual order

e 3! possible orders

é:B* b<c<a
b<a<c
c<b<a

b<s//\\3>c

b<c<a
b<a<c

C<V\>a

b<c<a b<a

Lower bound on Height

c<b<a

46

> depth d =

1 2leaves,d=2

> Can prove by induction

Number of
Height d >

leaves, L < 2d
log, L

4 leaves, eftc.

The decision tree has N! leaves
So the decision tree has height d > log,(N!)

A binary tree of height d has at most 29 leaves

48

log(N!) is Q(NlogN)

log(N!) =log(N [(N 1) [(N = 2)---(2) [(1))

select just the
first N/2 term
O

(@}
o

each of the selected
termsis= logN/
[

n=+2m(n/e"

Sterling’s formula

=logN +log(N -1) +log(N -2) +---+log2+1logl
>logN +log(N —1) +log(N - 2) +-.-+Iog%

>E|Ogﬁ
2 2

N _N _N
EE(IogN—IOQZ)—EIogN >
=Q(NlogN)

49

Summary of Sorting

» Sorting choices:
> O(N?) — Bubblesort, Insertion Sort
> O(N log N) average case running time:
» Heapsort: In-place, not stable.

» Mergesort: O(N) extra space, stable.

 Quicksort: claimed fastest in practice but, O(N?) worst
case. Needs extra storage for recursion. Not stable.

> Run time of any comparison-based sorting
algorithm is Q(N log N)

> O(N) — Radix Sort: fast and stable. Not
comparison based. Not in-place.

50

