
Sorting (Part II)
CSE 373

Data Structures
Unit 17

Reading: Section 3.2.6 Radix sort
Section 7.6 Mergesort, Section 7.7, Quicksort,
Sections 7.8 Lower bound

2

Bucket Sort: Sorting Integers
• The goal: sort N numbers, all between 1 to k.

• Example: sort 8 numbers 3,6,7,4,11,3,5,7. All
between 1 to 12.

• The method: Use an array of k queues. Queue j
(for 1 ≤ j ≤ k) keeps the input numbers whose
value is j.

• Each queue is denoted ‘a bucket’.

• Scan the list and put the elements in the buckets.
• Output the content of the buckets from 1 to k.

3

Bucket Sort: Sorting Integers
• Example: sort 8 numbers 3,6,7,4,11,3,9,7 all

between 1 to 12.

1 2 3 4 5 6 7 8 9 10 11 12

3
3

4 976 11
7

• Step 1: scan the list and put the elements in
the queues

• Step 2: concatenate the queues

3,3,4,6,7,7,9,11

• Time complexity: O(n+k).

3
3

4 976 11
7

4

Radix Sort: Sorting integers
• Historically goes back to the 1890 census.

• Radix sort = multi-pass bucket sort of integers
in the range 0 to BP-1

• Bucket-sort from least significant to most
significant “digit” (base B)

• Requires P(B+N) operations where P is the
number of passes (the number of base B digits
in the largest possible input number).

• If P and B are constants then O(N) time to sort!

5

67
123

38
3

721
9

537
478

Bucket sort
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses
B=10 and base 10
digits for simplicity of
demonstration. Larger
bucket counts should
be used in an actual
implementation.

Radix Sort Example

721
3

123
537

67
478

38
9

After 1st pass

6

Bucket sort
by 10’s
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

Radix Sort Example

721
3

123
537

67
478

38
9

After 1st pass After 2nd pass
3
9

721
123
537

38
67

478

7

Bucket sort
by 100’s
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

Radix Sort Example

After 2nd pass
3
9

721
123
537

38
67

478

After 3rd pass
3
9

38
67

123
478
537
721

Invariant: after k passes the low order k digits are sorted.

8

Properties of Radix Sort

• Not in-place
› needs lots of auxiliary storage.

• Stable
› equal keys always end up in same bucket in the

same order.

• Fast
› Time to sort N numbers in the range 0 to BP-1 is

O(P(B+N)) (P iterations, B buckets in each)

9

“Divide and Conquer”

• Very important strategy in computer science:
› Divide problem into smaller parts
› Independently solve the parts
› Combine these solutions to get overall solution

• Idea 1: Divide array into two halves,
recursively sort left and right halves, then
merge two halves à Mergesort

• Idea 2 : Partition array into items that are
“small” and items that are “large”, then
recursively sort the two sets à Quicksort

10

Mergesort

• Divide it in two at the midpoint
• Conquer each side in turn (by

recursively sorting)
• Merge two halves together

8 2 9 4 5 3 1 6

11

Mergesort Example

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2 9 4 5 3 1 6

2 8 4 9 3 5 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

12

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

Auxiliary array

13

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 Auxiliary array

14

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 2 3 4 5 Auxiliary array

15

Merging

i j

target

normal

i j

target

Left completed
first

copy

16

Merging

i j

target

Right completed
first

first

second

17

Merging

Mer ge(A[] , T[] : i nt eger ar r ay, l ef t , r i ght : i nt eger) : {
mi d, i , j , k, l , t ar get : i nt eger ;
mi d : = (r i ght + l ef t) / 2;
i : = l ef t ; j : = mi d + 1; t ar get : = l ef t ;
whi l e i < mi d and j < r i ght do

i f A[i] < A[j] t hen T[t ar get] : = A[i] ; i : = i + 1;
el se T[t ar get] : = A[j] ; j : = j + 1;

t ar get : = t ar get + 1;
i f i > mi d t hen / / l ef t compl et ed/ /

f or k : = l ef t t o t ar get - 1 do A[k] : = T[k] ;
i f j > r i ght t hen / / r i ght compl et ed/ /

k : = mi d; l : = r i ght ;
whi l e k > i do A[l] : = A[k] ; k : = k- 1; l : = l - 1;
f or k : = l ef t t o t ar get - 1 do A[k] : = T[k] ;

}

18

Recursive Mergesort

Mer gesor t (A[] , T[] : i nt eger ar r ay, l ef t , r i ght : i nt eger) : {
i f l ef t < r i ght t hen

mi d : = (l ef t + r i ght) / 2;
Mer gesor t (A, T, l ef t , mi d) ;
Mer gesor t (A, T, mi d+1, r i ght) ;
Mer ge(A, T, l ef t , r i ght) ;

}

Mai nMer gesor t (A[1. . n] : i nt eger ar r ay, n : i nt eger) : {
T[1. . n] : i nt eger ar r ay;
Mer gesor t [A, T, 1, n] ;

}

19

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

20

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Need of a last copy

21

Iterative Mergesort

I t er at i veMer gesor t (A[1. . n] : i nt eger ar r ay, n : i nt eger) : {
/ / pr econdi t i on: n i s a power of 2/ /

i , m, par i t y : i nt eger ;
T[1. . n] : i nt eger ar r ay;
m : = 2; par i t y : = 0;
whi l e m < n do

f or i = 1 t o n – m + 1 by m do
i f par i t y = 0 t hen Mer ge(A, T, i , i +m- 1) ;

el se Mer ge(T, A, i , i +m- 1) ;
par i t y : = 1 – par i t y ;
m : = 2* m;

i f par i t y = 1 t hen
f or i = 1 t o n do A[i] : = T[i] ;

}

How do you handle non-powers of 2?
How can the final copy be avoided?

22

Mergesort Analysis

• Let T(N) be the running time for an
array of N elements

• Mergesort divides array in half and calls
itself on the two halves. After returning,
it merges both halves using a temporary
array

• Each recursive call takes T(N/2) and
merging takes O(N)

23

Mergesort Recurrence
Relation

• The recurrence relation for T(N) is:

› T(1) < a
• base case: 1 element array à constant time

› T(N) < 2T(N/2) + bN
• Sorting N elements takes

– the time to sort the left half
– plus the time to sort the right half
– plus an O(N) time to merge the two halves

• T(N) = O(n log n) (see Lecture 5 Slide17)

24

Properties of Mergesort

• Not in-place
› Requires an auxiliary array (O(n) extra

space)

• Stable
› Make sure that left is sent to target on

equal values.

• Iterative Mergesort reduces copying.

25

Quicksort

• Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space
that MergeSort does
› Partition array into left and right sub-arrays

• Choose an element of the array, called pivot
• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

› Recursively sort left and right sub-arrays
› Concatenate left and right sub-arrays in O(1) time

26

“Four easy steps”

• To sort an array S
1. If the number of elements in S is 0 or 1,

then return. The array is sorted.
2. Pick an element v in S. This is the pivot

value.

3. Partition S-{v} into two disjoint subsets, S1
= {all values x≤v}, and S2 = {all values x≥v}.

4. Return QuickSort(S1), v, QuickSort(S2)

27

The steps of QuickSort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13 8192

43 65
31

5726

750S1 S2
partition S

13 4331 57260

S1
81 927565

S2

QuickSort(S1) and
QuickSort(S2)

13 4331 57260 65 81 9275S Voila! S is sorted
[Weiss]

28

Details, details

• Implementing the actual partitioning
• Picking the pivot

› want a value that will cause |S1| and |S2| to
be non-zero, and close to equal in size if
possible

• Dealing with cases where an element
equals the pivot

29

Quicksort Partitioning

• Need to partition the array into left and right sub-
arrays
› the elements in left sub-array are ≤ pivot
› elements in right sub-array are ≥ pivot

• How do the elements get to the correct partition?
› Choose an element from the array as the pivot
› Make one pass through the rest of the array and

swap as needed to put elements in partitions

30

Partitioning:Choosing the pivot

• One implementation (there are others)

› median3 finds pivot and sorts left, center,
right
• Median3 takes the median of leftmost, middle, and

rightmost elements
• An alternative is to choose the pivot randomly (need a

random number generator; “expensive”)
• Another alternative is to choose the first element (but

can be very bad. Why?)

› Swap pivot with next to last element

31

Partitioning in-place

› Set pointers i and j to start and end of array

› Increment i until you hit element A[i] > pivot
› Decrement j until you hit element A[j] < pivot

› Swap A[i] and A[j]
› Repeat until i and j cross

› Swap pivot (at A[N-2]) with A[i]

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

i j

Example

Place the largest at the right
and the smallest at the left.
Swap pivot with next to last element.

Median of 0, 6, 8 is 6. Pivot is 6

Choose the pivot as the median of three

33

Example

0 1 4 9 7 3 5 2 6 8

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

i j

Move i to the right up to A[i] larger than pivot.
Move j to the left up to A[j] smaller than pivot.
Swap

0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 86

ij

0 1 4 2 5 3 6 9 7 8

ij

S1 < pivot pivot S2 > pivot

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 86

i j

0 1 4 2 5 3 7 9 6 8

i j

Example

Cross-over i > j

35

Recursive Quicksort

Qui cksor t (A[] : i nt eger ar r ay, l ef t , r i ght : i nt eger) : {
pi vot i ndex : i nt eger ;
i f l ef t + CUTOFF ≤ r i ght t hen

pi vot : = medi an3(A, l ef t , r i ght) ;
pi vot i ndex : = Par t i t i on(A, l ef t , r i ght - 1, pi vot) ;
Qui cksor t (A, l ef t , pi vot i ndex – 1) ;
Qui cksor t (A, pi vot i ndex + 1, r i ght) ;

el se
I nser t i onsor t (A, l ef t , r i ght) ;

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

36

Quicksort Best Case
Performance

• Algorithm always chooses best pivot
and splits sub-arrays in half at each
recursion
› T(0) = T(1) = O(1)

• constant time if 0 or 1 element

› For N > 1, 2 recursive calls plus linear time
for partitioning

› T(N) = 2T(N/2) + O(N)
• Same recurrence relation as Mergesort

› T(N) = O(N log N)

37

Quicksort Worst Case
Performance

• Algorithm always chooses the worst pivot –
one sub-array is empty at each recursion
› T(N) ≤ a for N ≤ C
› T(N) ≤ T(N-1) + bN
› ≤ T(N-2) + b(N-1) + bN
› ≤ T(C) + b(C+1)+ … + bN
› ≤ a +b(C + (C+1) + (C+2) + … + N)
› T(N) = O(N2)

• Fortunately, average case performance is
O(N log N) (see text for proof)

38

Properties of Quicksort

• Not stable because of long distance
swapping.

• No iterative version (without using a stack).

• Pure quicksort not good for small arrays.
• “In-place”, but uses auxiliary storage because

of recursive call (O(logn) space).

• O(n log n) average case performance, but
O(n2) worst case performance.

39

Folklore

• “Quicksort is the best in-memory sorting
algorithm.”

• Truth
› Quicksort uses very few comparisons on

average.
› Quicksort does have good performance in

the memory hierarchy.
• Small footprint
• Good locality

40

How fast can we sort?

• Heapsort, Mergesort, and Quicksort all
run in O(N log N) best case running
time

• Can we do any better?
• No, if sorting is comparison-based.
• We saw that radix sort is O(N) but it is

only for integers from bounded-range.

41

Sorting Model

• Recall the basic assumption: we can only
compare two elements at a time
› we can only reduce the possible solution space by

half each time we make a comparison

• Suppose you are given N elements
› Assume no duplicates

• How many possible orderings can you get?
› Example: a, b, c (N = 3)

42

Permutations

• How many possible orderings can you get?
› Example: a, b, c (N = 3)
› (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
› 6 orderings = 3•2•1 = 3! (i.e., “3 factorial”)
› All the possible permutations of a set of 3 elements

• For N elements
› N choices for the first position, (N-1) choices for the

second position, …, (2) choices, 1 choice
› N(N-1)(N-2)�(2)(1)= N! possible orderings

43

Decision Tree
a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

The leaves contain all the possible orderings of a, b, c
44

Decision Trees
• A Decision Tree is a Binary Tree such that:

› Each node = a set of orderings
• i.e., the remaining solution space

› Each edge = 1 comparison
› Each leaf = 1 unique ordering
› How many leaves for N distinct elements?

• N!, i.e., a leaf for each possible ordering

• Only 1 leaf has the ordering that is the
desired correctly sorted arrangement

45

Decision Trees and Sorting
• Every comparison-based sorting algorithm

corresponds to a decision tree
› Finds correct leaf by choosing edges to follow

• i.e., by making comparisons

› Each decision reduces the possible solution space
by one half

• Run time is ≥ maximum no. of comparisons
› maximum number of comparisons is the length of

the longest path in the decision tree, i.e. the height
of the tree

46

Decision Tree Example

a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

3! possible orders

actual order

47

How many leaves on a tree?

• Suppose you have a binary tree of height d .
How many leaves can the tree have?
› d = 1 à at most 2 leaves,
› d = 2 à at most 4 leaves, etc.

48

Lower bound on Height

• A binary tree of height d has at most 2d leaves
› depth d = 1 à 2 leaves, d = 2 à 4 leaves, etc.
› Can prove by induction

• Number of leaves, L < 2d

• Height d > log2 L

• The decision tree has N! leaves

• So the decision tree has height d ≥ log2(N!)

49

log(N!) is Ω(NlogN)

()

)log(
2

log
2

)2log(log
2

2
log

2

2
log)2log()1log(log

1log2log)2log()1log(log

)1()2()2()1(log)!log(

NN

N
N

N
N

N

NN

N
NNN

NNN

NNNN

Ω=

−=−≥

≥

++−+−+≥

+++−+−+=
⋅−⋅−⋅=

�

�

�

select just the
first N/2 terms

each of the selected
terms is ≥ logN/2

nennn)/(2! π≈
Sterling’s formula

50

Summary of Sorting

• Sorting choices:
› O(N2) – Bubblesort, Insertion Sort
› O(N log N) average case running time:

• Heapsort: In-place, not stable.
• Mergesort: O(N) extra space, stable.
• Quicksort: claimed fastest in practice but, O(N2) worst

case. Needs extra storage for recursion. Not stable.

› Run time of any comparison-based sorting
algorithm is Ω(N log N)

› O(N) – Radix Sort: fast and stable. Not
comparison based. Not in-place.

