Sorting

Sorting (Part I)

* Input
CSE 373 > an array A of data records
Data Structures > a key value in each data record
Unit 16 > a comparison function which imposes a
consistent ordering on the keys (.. integers)
e Output
Reading: Sections 7.1-7.3 and 7.5 > reorganize the elements of A such that

«Forany iandj, if i < j then A[i] < A[]

Consistent Ordering Why Sort?

» Sorting algorithms are among the most

* The comparison function must provided a) :
y y frequently used algorithms in computer

consistent ordering on the set of possible keys

science
> You can compare any two keys and get back an]
indication of a<b,a>b,ora=b » Allows binary search of an N-element
> The comparison functions must be consistent array in O(log N) time
* If conpare(a, b) says a<b, then conpare(b, a) must say b>a ° A”OWS O(l) tlme access to kth |argeSt

* If conpare(a, b) says a=b, then conpare(b, a) must say b=a

* If conpare(a, b) says a=b, then equal s(a, b) and equal s(b, a) element In the array for any K
must say a=b » Allows easy detection of any duplicates

Space

* How much space does the sorting algorithm
require in order to sort the collection of items?

>

>

Is copying needed? O(n) additional space

In-place sorting — no copying — O(1) additional

space

Somewhere in between for “temporary”, e.qg.

O(logn) space

External memory sorting — data so large that does

not fit in memory

1000

500

n-log,n
800 -

700

600 -

Faster isbetter!

A00+

400 +

300 -

200 H

100

log,n

— Oflog, n)

— Y

Qin
- Qin \ng2]

800 900

1000

Time

* How fast is the algorithm?

> The definition of a sorted array A says that for any
i<j, Ali] < Al]]

> This means that you need to at least check on
each element at the very minimum, l.e., at least
O(N)

> And you could end up checking each element
against every other element, which is O(N?)

> The big question is: How close to O(N) can you
get?

Stability

» Stability: Does it rearrange the order of input
data records which have the same key value
(duplicates)?
> E.g. Phone book sorted by nhame. Now sort by

county — is the list still sorted by name within each
county?

> Extremely important property for databases

> A stable sorting algorithm is one which does not
rearrange the order of duplicate keys

3,13,13.|4|5.]5,| 8 213./3,/3,|4|5,/5,| 8
Stable Sort Unstable Sort

Bubblesort

bubbl e(A[1..n]: integer array, n : integer): {
i, j : integer;
for i =1ton-1do
for j =2 to n-i+1 do

if Alj-1] > A[j] then SWAP(A[j-1],Alj]);

SWAP(a, b) : {
t :integer;
t:=a; a:=b; b:=t;
}

i=1: Largest element is placed at last position
i=k: kth Largest element is placed at ki to last position

11

Bubble Sort

» “Bubble” elements to to their proper place in
the array by comparing elements i and i+1,
and swapping if A[i] > A[i+1]

> Bubble every element towards its correct position

* last position has the largest element

 then bubble every element except the last one towards
its correct position

« then repeat until done or until the end of the quarter,
whichever comes first ...

10

Put the largest element in its

place
larger value? —> 2 3 8 8
[

[1J2[3]8 7]9 [10]12[23[18[15] 1617 [14]
e

[(1[2]3[7]s8

[9 101223181516 [17 [14]

9 10 12 23 23

[910122318 [15[16 [17 [14]
SWi

[1[2]3[7]s

©

[1]2 [3]7[8]9[10]12[18[23[15] 1617 [14]

S

[1[2[3[7[]8]9 101218152316 [17[14
S

[1[2[3[]7[]8]9 101218151623 [17 [14

2%
[1J2[3]7[8]9J10]12]18[15][16 17 [23] 14
SWi
[1]2]3[7[]8]9J10[12[18[15][16 17 [14{]23]

12

y .
Put 2"? largest element in its Bubble Sort: Just Say No

place
I dug?—> 2 3 7 8 9 10 12 18 18 “ ” .
R ey T s T o T) . .Bubble elements to to their proper.place
in the array by comparing elements i and
[1]2[3[7[]8]9 101215181617 [14]23]
e i+1, and swapping if A[i] > A[i+1]
[1]2[3[7[]8]9J10[12[15][16[18][17 [14 [23]))))
22 « We bubblize for i=1 to n (i.e, n times)
[1]2 [3]7[8]9J10]12[15[16[17 18] 14 [23|
s a7 s |9 101215 1617] 1;(7[%[\33‘ « Each bt_Jbelzatlon is a loop that makes n-i
~— comparisons
Two elements done, only n-2 more to go ... e This is O(n?)
13 14
Insertion Sort Insertion Sort
° What |f ﬁrSt k elements Of array are InsertionSort (Al1..N]: integer array, N integer) {
i, j, tenp: integer ;
already sorted? for i =2 to N{
>4,7,12, 5,19, 16 temp = Alil;
ISR T I g ’ jor=i-1
« We can shift the tail of the sorted elements B A v o S
list down and then insert next element into Alj] = temp; ’
proper position and we get k+1 sorted } }
elements }
>4,5, 7,12, 19, 16 * Is Insertion sort in place? Stable? Running time = ?

» Have we used this before?

15 16

Example

N

[1[2[3[8]7]J]o9J1o[12[23][18[15][16[17 [14

N

9

[10] 1223 [18 [15[16 [17 [14

'

9

[10 1218231516 [17 [14

[0z [16 [15]

[1 237809 2316 [17] 14
N
[1 23] 7[8]9J10]12]15[18[23 [16] 17 [14
r"\
[1[2[3[7[]8]9 101215181623 [17 [14
)
[1]2]3[7[]8]9 1012151618 [23 [17 [14]

Insertion Sort Characteristics

17

Example

* In place and Stable

* Running time

> Worst case is O(N?)
* reverse order input
* must copy every element every time

» Good sorting algorithm for almost sorted

data

> Each item is close to where it belongs in

sorted order.

19

N
[1 23] 7[8]9J10]12]15]16[18[17[2

w
=
~

[1]2[3[7[]8]9 1012151617 [18[23 [14]

"
[1]2[3[7[]8]9 1012151617 18] 14 [23

18

Inversions

An inversion is a pair of elements in wrong
order

> 1 <jbut Afi] > A[j]
By definition, a sorted array has no
inversions

So you can think of sorting as the process
of removing inversions in the order of the
elements

20

Inversions

» A single value out of place can cause
several inversions

A o0

vdue | 112(3|8|7|9(10{12/23(14|15/16|17|18
index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

21

Inversions

» Our simple sorting algorithms so far swap
adjacent elements (explicitly or implicitly)
and remove just 1 inversion at a time

> Their running time is proportional to number
of inversions in array
» Given N distinct keys, the maximum

possible number of inversions is
n-1
. (n-1)n
n-1)+(n-2)+...+1=)» i=——
(n-1)+(n-2) Zl 5

23

Reverse order

 All values out of place (reverse order)
causes numerous inversions

A RSN

vduee |111213|8|7(9|10/12/23/18|17|16|15(14
N

indx o 1 2 3 4 5 6 7 8 9 10 11 12 13

22

Inversions and Adjacent Swap
Sorts

* "Average" list will contain half the max
number of inversions = (”‘41)”
> So the average running time of Insertion
sort is ©(N?) (i.e, O(N?) is a tight bound)
« Any sorting algorithm that only swaps
adjacent elements requires Q(N?) time
because each swap removes only one
inversion (lower bound)

24

Heap Sort

We use a Max-Heap

Root node = A[1]

Children of A[i] = AJ2i], A[2i+1]

Keep track of current size N (number of
nodes)

N @

vee | 75624 (5)

index12345678
N=5

®

25

1 Removal = 1 Addition

» Every time we do a DeleteMax, the heap
gets smaller by one node, and we have one
more node to store

> Store the data at the end of the heap array
> Not "in the heap” but it is in the heap array

vdee | 6 | 5|4 2|7 (5)
indx 1 2 3 4 5 6 7 8

Using Binary Heaps for

Sorting
Build a max-heap Bl (@)
Do N DeleteMax operations Max-heap (5) (6
and store each Max > @
element as it comes out of
the heap |

Data comes out in largest
to smallest order

Where can we put the ® @
elements as they are @ @
removed from the heap?

DeleteMax @

26

Repeated DeleteMax

(5)
5| 24|67 @ @
1 2 3 4 5 6 7 8 ® @
N=3
412|567 @ ®
1 2 3 4 5 6 7 8 ® @

28

Heap Sort is In-place Heapsort: Analysis

» After all the DeleteMaxs, the heap is gone * Running time
but the array is full and is in sorted order > time to build max-heap is O(N)
> time for N DeleteMax operations is N O(log N)
@ > total time is O(N log N)
vdee | 2 1415167 @ (5 » Can also show that running time is Q(N log N)
index 12 3 j 5 6 7 8 ® @ for some |nput§,
N=0 > so worst case is O(N log N)

> Average case running time is also O(N log N)
* Heapsort is in-place but not stable (why?)

29 30

