
Sorting (Part I)

CSE 373
Data Structures

Unit 16

Reading: Sections 7.1-7.3 and 7.5
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Sorting

• Input

› an array A of data records
› a key value in each data record
› a comparison function which imposes a 

consistent ordering on the keys (e.g., integers)

• Output

› reorganize the elements of A such that
• For any i and j, if i < j then A[i] ≤ A[j]
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Consistent Ordering

• The comparison function must provided a 
consistent ordering on the set of possible keys
› You can compare any two keys and get back an 

indication of  a < b, a > b, or a = b
› The comparison functions must be consistent

• If compar e( a, b) says a<b, then compar e( b, a) must say b>a
• If compar e( a, b) says a=b, then compar e( b, a) must say b=a 
• If compar e( a, b) says a=b, then equal s( a, b)  and equal s( b, a)

must say a=b 
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Why Sort?

• Sorting algorithms are among the most 
frequently used algorithms in computer 
science

• Allows binary search of an N-element 
array in O(log N) time

• Allows O(1) time access to kth largest 
element in the array for any k

• Allows easy detection of any duplicates
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Space

• How much space does the sorting algorithm 
require in order to sort the collection of items?
› Is copying needed? O(n) additional space
› In-place sorting – no copying – O(1) additional 

space
› Somewhere in between for “temporary”, e.g. 

O(logn) space
› External memory sorting – data so large that does 

not fit in memory
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Time

• How fast is the algorithm?
› The definition of a sorted array A says that for any 

i<j, A[i] < A[j]
› This means that you need to at least check on 

each element at the very minimum, I.e., at least 
O(N)

› And you could end up checking each element 
against every other element, which is O(N2)

› The big question is: How close to O(N) can you 
get?

n2

n·log2n

n

log2n

Faster is better!
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Stability

• Stability: Does it rearrange the order of input 
data records which have the same key value 
(duplicates)? 
› E.g. Phone book sorted by name. Now sort by 

county – is the list still sorted by name within each 
county?

› Extremely important property for databases 
› A stable sorting algorithm is one which does not 

rearrange the order of duplicate keys
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Example

5a 8 3a 5b 4 3b 2 3c

5a 83a 5b43b2 3c

5a 8 3a 5b 4 3b 2 3c

5a 83a 5b43b2 3c

Stable Sort Unstable Sort
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Bubble Sort

• “Bubble” elements to to their proper place in 
the array by comparing elements i and i+1, 
and swapping if A[i] > A[i+1]
› Bubble every element towards its correct position

• last position has the largest element
• then bubble every element except the last one towards 

its correct position
• then repeat until done or until the end of the quarter, 

whichever comes first ...
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Bubblesort

bubbl e( A[ 1. . n] :  i nt eger  ar r ay,  n :  i nt eger ) :  {
i ,  j  :  i nt eger ;
f or  i  = 1 t o n- 1 do 

f or  j  = 2 t o n–i +1 do
i f  A[ j - 1]  > A[ j ]  t hen SWAP( A[ j - 1] , A[ j ] ) ;

}

SWAP( a, b)  :   {
t  : i nt eger ;  
t : =a;  a: =b;  b: =t ;  

}

i=1: Largest element is placed at last position
i=k: kth Largest element is placed at kth to last position
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Put the largest element in its 
place

1 2 3 8 7 9 10 12 23 18 15 16 17 14

2 3larger value? 8 8

7 8

swap

1 2 3 7 8 9 10 12 23 18 15 16 17 14

9 10 12 23

18 23

swap

23

15 16 17 14

18 15

swap

23 16 17 14

18 15

swap

16 23 17 14

18 15

swap

16 17 23 14

18 15

swap

16 17 14 23

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

9 10 12 23 18 15 16 17 141 2 3
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Put 2nd largest element in its 
place

1 2 3 7 8 9 10 12

2 3larger value? 7 8

7 8

swap

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

9 10 121 2 3

18 15 16 17 14 23

15 18 16 17 14 23

9 10 12 18 18

swap

15 16 18 17 14 23
swap

15 16 17 18 14 23
swap

15 16 17 14 18 23

Two elements done, only n-2 more to go ...
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Bubble Sort: Just Say No

• “Bubble” elements to to their proper place 
in the array by comparing elements i and 
i+1, and swapping if A[i] > A[i+1]

• We bubblize for i=1 to n (i.e, n times)
• Each bubblization is a loop that makes n-i 

comparisons
• This is O(n2)
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Insertion Sort

• What if first k elements of array are 
already sorted?
› 4, 7, 12, 5, 19, 16

• We can shift the tail of the sorted elements 
list down and then insert next element into 
proper position and we get k+1 sorted 
elements
› 4, 5, 7, 12, 19, 16
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Insertion Sort

I nser t i onSor t ( A[ 1. . N] :  i nt eger  ar r ay,  N:  i nt eger )  {          

i ,  j ,  t emp:  i nt eger  ;

f or  i  = 2 t o N {

t emp : = A[ i ] ;

j  : = i - 1;

whi l e j  > 1 and A[ j - 1]  > t emp {

A[ j ]  : = A[ j - 1] ;  j  : = j –1;

A[ j ]  = t emp;   

}           

}         

}

• Is Insertion sort in place?  Stable?  Running time = ?
• Have we used this before? 
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Example

1 2 3 8 7 9 10 12 23 18 15 16 17 14

1 2 3 7 8 9 10 12 23 18 15 16 17 14

18 23 15 16 17 14

18 15 23 16 17 14

15 18 23 16 17 14

15 18 16 23 17 14

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

15 16 18 23 17 141 2 3 7 8 9 10 12
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Example

15 16 18 17 23 141 2 3 7 8 9 10 12

15 16 17 18 23 141 2 3 7 8 9 10 12

15 16 17 18 14 231 2 3 7 8 9 10 12

15 16 17 14 18 231 2 3 7 8 9 10 12

15 16 14 17 18 231 2 3 7 8 9 10 12

15 14 16 17 18 231 2 3 7 8 9 10 12

14 15 16 17 18 231 2 3 7 8 9 10 12
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Insertion Sort Characteristics

• In place and Stable
• Running time

› Worst case is O(N2)
• reverse order input
• must copy every element every time

• Good sorting algorithm for almost sorted 
data
› Each item is close to where it belongs in 

sorted order.
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Inversions

• An inversion is a pair of elements in wrong 
order
› i < j but A[i] > A[j]

• By definition, a sorted array has no 
inversions

• So you can think of sorting as the process 
of removing inversions in the order of the 
elements
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Inversions

• A single value out of place can cause 
several inversions

value

index

1 2 3 8 7 9 10 12
0 1 2 3 4 5 6 7

23 14 15 16
8 9 10 11 12 13

17 18
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Reverse order

• All values out of place (reverse order) 
causes numerous inversions

value

index

1 2 3 8 7 9 10 12

0 1 2 3 4 5 6 7

23 18 17 16

8 9 10 11 12 13

15 14
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Inversions

• Our simple sorting algorithms so far swap 
adjacent elements (explicitly or implicitly) 
and remove just 1 inversion at a time
› Their running time is proportional to number 

of inversions in array

• Given N distinct keys, the maximum 
possible number of inversions is

2
1)n-(n

i1...2)(n1)(n
1n

1i
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−

=
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Inversions and Adjacent Swap 
Sorts

• "Average" list will contain half the max 
number of inversions = 
› So the average running time of Insertion 

sort is Θ(N2) (i.e, O(N2) is a tight bound)
• Any sorting algorithm that only swaps 

adjacent elements requires Ω(N2) time 
because each swap removes only one 
inversion (lower bound)

( )
4

n1n −
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Heap Sort

• We use a Max-Heap
• Root node = A[1]
• Children of A[i] = A[2i], A[2i+1]
• Keep track of current size N (number of 

nodes)

N = 5

value

index

7

65

42

7 5 6 2 4
1 2 3 4 5 6 7 8
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Using Binary Heaps for 
Sorting

• Build a max-heap
• Do N DeleteMax operations 

and store each Max 
element as it comes out of 
the heap

• Data comes out in largest 
to smallest order

• Where can we put the 
elements as they are 
removed from the heap?

Build
Max-heap

DeleteMax

7

65

42

6

45

72
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1 Removal = 1 Addition
• Every time we do a DeleteMax, the heap 

gets smaller by one node, and we have one 
more node to store
› Store the data at the end of the heap array
› Not "in the heap" but it is in the heap array

N = 4

value

index

6 5 4 2 7
1 2 3 4 5 6 7    8

6

45

72
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Repeated DeleteMax

N = 3

5 2 4 6 7
1 2 3 4 5 6 7    8

5

42

76

N = 2

4 2 5 6 7
1 2 3 4 5 6 7    8

4

52

76
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Heap Sort is In-place

• After all the DeleteMaxs, the heap is gone 
but the array is full and is in sorted order

N = 0

value

index

2 4 5 6 7
81 2 3 4 5 6 7

2

54

76
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Heapsort: Analysis

• Running time
› time to build max-heap is O(N)
› time for N DeleteMax operations is N O(log N)
› total time is O(N log N)

• Can also show that running time is Ω(N log N) 
for some inputs, 
› so worst case is ΘΘΘΘ(N log N)
› Average case running time is also O(N log N)

• Heapsort is in-place but not stable (why?)


