
Graph Algorithms –
Introduction and 
Topological Sort

CSE 373
Data Structures

Unit 12

Reading: Sections 9.1 and 9.2
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What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of 
“graph”
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Graphs

• Graphs are composed of
› Nodes (vertices)

› Edges (arcs) node

edge
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Varieties

• Nodes
› Labeled or unlabeled

• Edges
› Directed or undirected

› Labeled or unlabeled
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Motivation for Graphs
• Consider the data structures we have 

looked at so far…

• Linked list: nodes with 1 incoming 
edge + 1 outgoing edge

• Binary trees/heaps: nodes with 1 
incoming edge + 2 outgoing edges

• B-trees: nodes with 1 incoming edge 
+ multiple outgoing edges
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Motivation for Graphs

• How can you generalize these data 
structures?

• Consider data structures for representing 
the following problems…
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CSE Course Prerequisites at 
UW

321143

142

322

326

341370

378

401

421Nodes = courses
Directed edge = prerequisite
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Representing a Maze

S

Nodes = junctions
Edge = door or passage

S

E

B

E
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Representing Electrical 
Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor
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Precedence
S1 a=0;

S2 b=1;

S3 c=a+1

S4 d=b+a;

S5 e=d+1;

S6 e=c+d;

3

1 2

6

5

4Which statements must execute before S6?

S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements
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Information Transmission in a 
Computer Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140

181
30

16

56
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Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on 
connecting highway

UW
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Graph Definition

• A graph is simply a collection of nodes plus 
edges
› Linked lists, trees, and heaps are all special cases 

of graphs

• The nodes are known as vertices (node = 
“vertex”)

• Formal Definition: A graph G is a pair (V, E) 
where
› V is a set of vertices or nodes 
› E is a set of edges that connect vertices
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Graph Example

• Here is a directed graph G = (V, E)
› Each edge is a pair (v1, v2), where v1, v2 are vertices 

in V 
› V = {A, B, C, D, E, F}

E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED

F
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Directed vs Undirected 
Graphs

• If the order of edge pairs (v1, v2) matters, the graph is 
directed (also called a digraph): (v1, v2) ≠ (v2, v1) 

• If the order of edge pairs (v1, v2) does not matter, the 
graph is called an undirected graph: in this case, (v1, 
v2) = (v2, v1) 

v1
v2

v1 v2

v3

v3
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Undirected Terminology

• Two vertices u and v are adjacent in an 
undirected graph G if {u,v} is an edge in G
› edge e = {u,v} is incident with vertex u and vertex 

v

• The degree of a vertex in an undirected 
graph is the number of edges incident with it
› a self-loop counts twice (both ends count)
› denoted with deg(v)
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Undirected Terminology

A

B
C

ED

F

Degree = 3

Degree = 0

B is adjacent to C and C is adjacent to B
(A,B) is incident
to A and to B

Self-loop
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Directed Terminology

• Vertex u is adjacent to vertex v in a directed 
graph G if (u,v) is an edge in G
› vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
› vertex v is the terminal (or end) vertex of (u,v)

• Degree
› in-degree is the number of edges with the vertex 

as the terminal vertex
› out-degree is the number of edges with the vertex 

as the initial vertex
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Directed Terminology

A

B
C

ED

F

In-degree = 2
Out-degree = 1

In-degree = 0
Out-degree = 0

B adjacent to C and C adjacent from B
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Handshaking Theorem

• Let G=(V,E) be an undirected graph with 
|E|=m edges.  Then

• Proof: Every edge contributes +1 to the 
degree of each of the two vertices it is 
incident with
› number of edges is exactly half the sum of deg(v)
› the sum of the deg(v) values must be even

�
∈

=
Vv

deg(v)2m
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• Space and time are analyzed in terms of:

• Number of vertices, n = |V|   and

• Number of edges, m = |E|

• There are at least two ways of representing 
graphs:

• The  adjacency matrix representation

• The  adjacency list representation

Graph Representations
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A     B     C     D     E     F

0      1      0      1      0     0     

1      0      1      0      0     0     

0      1      0      1      1     0     

1      0      1      0      1     0     

0      0      1      1      0     0     

0      0      0      0      0     0     M(v, w)  =  
1 if (v, w) is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

ED
F

Adjacency Matrix
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A     B     C     D     E     F

0      1      0      1      0     0     

0      0      1      0      0     0     

0      0      0      1      1     0     

0      0      0      0      1     0     

0      0      0      0      0     0     

0      0      0      0      0     0     

A

B

C

D

E

F

Space = |V|2

M(v, w)  =  
1 if (v, w) is in E

0 otherwise

A

B
C

ED
F

Adjacency Matrix for a 
Digraph
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B D

B D

C

A C E

D

E

A C

A

B

C

D

E

F

A

B
C

ED
F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that (v, w) is in E
a b

Adjacency List
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B D

E

D

C

a b

A

B

C

D

E

F

E

A

B
C

ED
F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|

Adjacency List for a Digraph

26

Trees

• An undirected graph is a tree if it is connected 
and contains no cycles.

• A directed graph is a directed tree if it has a root
and its underlying undirected graph is a tree.

• r∈V is a root if every vertex v∈V is reachable 
from r; i.e., there is a directed path which starts in 
r and ends in v.

�

�
�

�

�

�

�
�

�
�

�

�

�

�

�		
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Alternative Definitions of 
Undirected Trees

• G is cycles-free, but if any new edge is added to G, a 
cycle is formed.

• for every pair of vertices u,v, there is a unique, simple 
path from u to v.

• G is connected, but if any edge is deleted from G, the 
connectivity of G is interrupted.

• G is connected and has n–1 edges.
�

�
�

�

�

�

�
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G is a tree � G is cycle-free and 
has n – 1 edges.

�We show, by induction on n, that if G is a tree (cycle-free 
and connected), then its number of edges is n–1. 

Base: n=1

Step: Assume that it is true for all n < m, and let G be a tree 
with m vertices. Delete from G any edge e.  By definition 
(3), G is not connected any more, and is broken into two 
connected components each of which is cycle-free and 
therefore is a tree. By the inductive hypothesis, each 
component has one edge less than the number of 
vertices. Thus, both have m–2 edges. Add back e, to get 
m–1.
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Topological Sort

321143
322

326

341370

378

401

421

Problem: Find an order in
which all these courses can 
be taken.

Example: 142 à 143 à 378
à 370 à 321 à 341 à 322
à 326 à 421 à 401

In order to take a course, you must 
take all of its prerequisites first

142
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Given a digraph G = (V, E), find a linear ordering of 
its vertices such that: 

for any edge (v, w) in E, v precedes w in the ordering

A

B
C

F

D E

Topological Sort
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A

B
C

F

D E

EA DFB C

Any linear ordering in which
all the arrows go to the right
is a valid solution

Topo sort - good example

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.
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A

B
C

F

D E

DA EFB C

Any linear ordering in which
an arrow goes to the left
is not a valid solution

Topo sort - bad example

NO!
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Paths and Cycles

• Given a digraph G = (V,E), a path is a 
sequence of vertices v1,v2, …,vk such that:
› (vi,vi+1) in E for all 1 < i < k
› path length = number of edges in the path
› path cost = sum of costs of participating edges 

• A path is a cycle if :
› k > 1 and v1 = vk 

• G is acyclic if it has no cycles.
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Only acyclic graphs can be 
topologically sorted

• A directed graph with a cycle cannot be 
topologically sorted.

A

B
C

F

D EThere is no 
valid ordering 
of A,B,C,D
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Step 1: Identify vertices that have no incoming edges
• The “in-degree” of these vertices is zero

A

B
C

F

D E

Topo sort algorithm - 1
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Step 1: Identify vertices that have no incoming edges
• If no such vertices, graph has only cycle(s)
• Topological sort not possible – Halt.

A

B
C

D
Example of an ‘only-
cycles’ graph

Topo sort algorithm - 1a

E
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Step 1: Identify vertices that have no incoming edges
• Select one such vertex

A

B
C

F

D E

Select

Topo sort algorithm - 1b
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A

B
C

F

D E

Step 2: Delete this vertex of in-degree 0 and all 
its outgoing edges from the graph. Place it in the 
output.

Topo sort algorithm - 2

A
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A

B
C

F

D E

Repeat Step 1 and Step 2 until graph is empty 
(or until HALT due to cycles-only’).

Select

Continue until done
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A

B
C

F

D E

B

Select B.  Copy to sorted list.  Delete B and its edges.

Example (cont’) - B
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A

C

F

D E

B C

Select C.  Copy to sorted list.  Delete C and its edges.

C

42

AF

D E

B C D

Select D.  Copy to sorted list.  Delete D and its edges.

D
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AF

E

B C D E F

Select E.  Copy to sorted list.  Delete E and its edges.
Select F.  Copy to sorted list.  Delete F and its edges.

E, F

Yes, we could select F earlier (in any step).

The topological sort is not necessarily unique.
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A B C D E F

Done

A

B
C

F

D E
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A

B
C

F

D E

2 4

5
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3

1

2

3

4

5

6

Assume adjacency list
representation

Implementation

A B C D E F
1   2   3   4   5   6Translation

array
value next
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0

1

0

2

2

1In-Degree 
array; or add a 
field to array A

Calculate In-degrees

2 4

5

54

3

1

2

3

4

5

6

AD
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Calculate In-degrees

f or  i  = 1 t o n do D[ i ]  : = 0;  endf or
f or  i  = 1 t o n do 

x : = A[ i ] ;
whi l e x ≠ nul l  do

D[ x. val ue]  : = D[ x. val ue]  + 1;
x : = x. next ;

endwhi l e
endf or

Time Complexity?   O(n+m).  
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Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0

1Queue 6

1

2 3
6

4 5

Maintaining Degree 0 Vertices

0

1

0

2

2

1

2 4

5

54

3

1

2

3

4

5

6

AD
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After each vertex is output, when updating In-Degree array, 
enqueue any vertex whose In-Degree becomes zero

1

Queue 6

Output

2
dequeue enqueue

1

2 3
6

4 5

Topo Sort using a Queue 
(breadth-first)

0

0

0

1

2

1

2 4

5

54

3

1

2

3

4

5

6

AD
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Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the 

queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1
(c) Enqueue any of these vertices whose In-Degree 

became zero

4. If all vertices are output then success, 
otherwise there is a cycle.
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Some Detail

Mai n Loop
whi l e not Empt y( Q)  do

x : = Dequeue( Q)
Out put ( x)
y : = A[ x] ;
whi l e y  ≠ nul l  do

D[ y. val ue]  : = D[ y. val ue]  – 1;
i f  D[ y. val ue]  = 0 t hen Enqueue( Q, y. val ue) ;
y : = y. next ;

endwhi l e
endwhi l e

Time complexity? O(out_degree(x)) . 
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Topological Sort Analysis

• Initialize In-Degree array: O(|V| + |E|)
• Initialize Queue with In-Degree 0 vertices: O(|V|)
• Dequeue and output vertex:

› |V| vertices, each takes only O(1) to dequeue and 
output: O(|V|) 

• Reduce In-Degree of all vertices adjacent to a vertex 
and Enqueue any In-Degree 0 vertices:
› O(|E|)   (total out_degree of all vertices)

• For input graph G=(V,E) run time  =  O(|V| + |E|)
› Linear time!
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After each vertex is output, when updating In-Degree array, 
push any vertex whose In-Degree becomes zero

1

Stack 2

Output

6
pop push

1

2 3
6

4 5

Topo Sort using a Stack 
(depth-first)

0

0

0

1

2

1

2 4

5

54

3

1

2

3

4

5

6

AD


