Graph Algorithms — What are graphs?
Introduction and

Topological Sort " Yes thisisagraph... =~
¢xe fHIHIEE R :
2143 3 L T ARRERAE T i Tt
CSE 373
Data Structures
Unit 12 i

97 AprRIVINC IS Apriu Do t998priu e tBBAprIu L0 ta 1 Apr

Reading: Sections 9.1 and 9.2 « But we are interested in a different kind of

“graph”
Graphs Varieties
» Graphs are composed of * Nodes
> Nodes (vertices) > Labeled or unlabeled
> Edges (arcs) node » Edges
/ > Directed or undirected
O > Labeled or unlabeled

edge

Motivation for Graphs

» Consider the data structures we have node node
looked at so far... Value Ntzxt Value Nt:Xt
» Linked list: nodes with 1 incoming
edge + 1 outgoing edge @

» Binary trees/heaps: nodes with 1
incoming edge + 2 outgoing edges @ @

» B-trees: nodes with 1 incoming edge
+ multiple outgoing edges ﬁ @

5

CSE Course Prerequisites at

Nodes = courses
Directed edge = prerequisite

Motivation for Graphs

 How can you generalize these data
structures?

« Consider data structures for representing
the following problems...

Representing a Maze

Nodes = junctions
Edge = door or passage

Representing Electrical

.2 Precedence
Circuits '
Battery > Switc s, a=0; .
ﬂ_;\ S, b=1;
W S, c=a+l s
S, d=b+a;
Ss e=d+1;
Se e=c+d;

Which statements must execute before S;?
S,,S, S5 S,

Resistor

Nodes = battery, switch, resistor, etc.

: Nodes = statements
Edges = connections

Edges = precedence requirements 1 2

Information Transmission in a

Computer Network Traffic Flow on Highways

== Q.”-_Nd o
New York - Nodes = C|t|es_
| Edges = # vehicles on

140 e connecting highway

i /| PR
cober, S\

pQusst.com, TG 1999 Haviq

Nodes = computers
Edges = transmission rates

11 12

Graph Definition

» A graph is simply a collection of nodes plus
edges

> Linked lists, trees, and heaps are all special cases
of graphs

* The nodes are known as vertices (node =
“vertex”)

» Formal Definition: A graph G is a pair (V, E)
where
> Vs a set of vertices or nodes
> E is a set of edges that connect vertices

13

Directed vs Undirected
Graphs

* If the order of edge pairs (v,, V,) matters, the graph is
directed (also called a digraph): (v,, v,) # (V,, V;)

* If the order of edge pairs (v,, v,) does not matter, the
graph is called an undirected graph: in this case, (v,,

Vo) = (Vo Vq)

15

Graph Example

* Here is a directed graph G = (V, E)
> Each edge is a pair (v,, V,), where v,, v, are vertices
inV
> V={A,B,C,D, E, F}

E= {(A,B)Q‘,D), (B,C), (Q‘%,(C,E), (D,E)}

14

Undirected Terminology

» Two vertices u and v are adjacent in an
undirected graph G if {u,v} is an edge in G
> edge e ={u,v} is incident with vertex u and vertex
\'
* The degree of a vertex in an undirected
graph is the number of edges incident with it
> a self-loop counts twice (both ends count)
> denoted with deg(v)

16

Undirected Terminology

(A.B) is incident B is adjacent to C and C is adjacent to B

toAandtoB

Self-loop

®

Degree =0

Degree =3

17

Directed Terminology

Directed Terminology

B adjacent to C and C adjacent from B

Q G In-degree = 0

In-degree = 2 Out-degree =0
Out-degree =1

19

Vertex u is adjacent to vertex v in a directed
graph G if (u,v) isan edge in G

> vertex u is the initial vertex of (u,v)

Vertex v is adjacent from vertex u

> vertex v is the terminal (or end) vertex of (u,v)
Degree

> in-degree is the number of edges with the vertex
as the terminal vertex

> out-degree is the number of edges with the vertex
as the initial vertex

18

Handshaking Theorem

Let G=(V,E) be an undirected graph with
|E|=m edges. Then

2m =" deg(v)
Proof: Every edge contributes +1 to the

degree of each of the two vertices it is
incident with

> number of edges is exactly half the sum of deg(v)
> the sum of the deg(v) values must be even

20

Graph Representations Adjacency Matrix

O O O o o o m

- Space and time are analyzed in terms of: A B-C DE
. A O 0 0
* Number of vertices, n=|V| and @
B 01 0 O
* Number of edges, m = |E| @
cl o 1 o0 1 1
« There are at least two ways of representing ol 1 0 1 0 1
graphs:
: : . . o El 0 0 1 1 0
 The adjacency matrix representation MY, w) = lif(v.w)isin E
"] o otherwise F\LO O O 0 O
* The adjacency list representation Space = V|2

21 22

Adjacency Matrix for a Adiacency List

Digraph
A B C D E F For each vin V, L(v) = list of w such that (v, w) is in E
[A a b
Alo(1)o 1 0 o0 P
A B D
Bl 0O 0 1 0 0 O 5
cC, 0 0 0 1 1 0 A c
C B D E
Dl O 0 0 0O 1 O
D A C E
. . El O 0 0 0 O O
_ 1lif(v,w)isinE E C D
MV, W) =9 6 otherwise F\0O O O O O 0)
F
Space = |V|? Space=a|V|+2b|E|

23 24

Adjacency List for a Digraph

For each vin V, L(v) = list of w such that (v, w) is in E

a b

D

®

miojO| ®@

mT m O O W »

Space=a|V|+ b |E|

Alternative Definitions of
Undirected Trees

25

G is cycles-free, but if any new edge is added to G, a

cycle is formed.

for every pair of vertices u,v, there is a unique, simple

path from u to v.

G is connected, but if any edge is deleted from G, the

connectivity of G is interrupted.
G is connected and has n-1 edges.

27

Trees

* An undirected graph is a tree if it is connected
and contains no cycles.

» A directed graph is a directed tree if it has a root
and its underlying undirected graph is a tree.

* rV is aroot if every vertex v(1V is reachable
fromr; i.e., there is a directed path which starts in
rand ends in v.

G is atree = G is cycle-free and
has n — 1 edges.

= We show, by induction on n, that if G is a tree (cycle-free
and connected), then its number of edges is n—1.

Base:n=1 O

Step: Assume that it is true for all n <m, and let G be a tree
with m vertices. Delete from G any edge e. By definition
(3), G is not connected any more, and is broken into two
connected components each of which is cycle-free and
therefore is a tree. By the inductive hypothesis, each
component has one edge less than the number of
vertices. Thus, both have m-2 edges. Add back e, to get
m-1. 28

Topological Sort

Problem: Find an order in
which all these courses can
be taken.

Example: 142 143 378

370 321 341 322
326 421 401

In order to take a course, you must
take all of its prerequisites first

29

Topo sort - good example

/ G Any linear ordering in which
all the arrows go to the right
@ is a valid solution

T s~

Note that F can go anywherein thislist because it is not connected.
Also the solution is not unique.

31

Topological Sort

Given a digraph G = (V, E), find a linear ordering of
its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

30

Topo sort - bad example

Any linear ordering in which
@ an arrow goes to the left

is not a valid solution

32

Only acyclic graphs can be
topologically sorted

» Given a digraph G = (V,E), a path is a » A directed graph with a cycle cannot be
sequence of vertices v,,V,, ...,v, such that: topologically sorted.
> (Vv inEforall1<i<k
> path length = number of edges in the path /’
> path cost = sum of costs of participating edges
 Apathisacycleif:
> k>landv; =v,

Paths and Cycles

- Gis acyclic if it has no cycles. i ordenmg
of AB,C,D
33 34
Topo sort algorithm - 1 Topo sort algorithm - 1a
Step 1: Identify vertices that have no incoming edges Step 1: Identify vertices that have no incoming edges
» The “in-degree” of these vertices is zero « If no such vertices, graph has only cycle(s)

* Topological sort not possible — Halt.

s ©®
: K
Example of an ‘only-
Q e @—» cycles’ graph

35 36

Topo sort algorithm - 1b

Topo sort algorithm - 2

Step 1: Identify vertices that have no incoming edges

* Select one such vertex

Sdlect

37

Continue until done

Step 2: Delete this vertex of in-degree 0 and all
its outgoing edges from the graph. Place it in the
output.

38

Example (cont’) - B

Repeat Step 1 and Step 2 until graph is empty

(or until HALT due to cycles-only’).
Select

&—p
® =0
D ®

39

Select B. Copy to sorted list. Delete B and its edges.

40

C

Select C. Copy to sorted list. Delete C and its edges.

@ = ese

41

E, F

D

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

F =» @e0ee®
E
Yes, we could select F earlier (in any step).

The topological sort is not necessarily unique.

43

Select D. Copy to sorted list. Delete D and its edges.

® = (e

Done

42

G
)/

a4

Implementation

Calculate In-degrees

Assume adjacency list

representation
1 2 4
® ‘HE
3 4 5
4 5
Translation 1 2 3 4 5 6 Z value next

array A|B|C|D|E|F|

Calculate In-degrees

45

D A

ol 1 2 4

1 2 3
In-Degree —> 1] 3 - 2
array; or add a 2| 4 5
field to array A 5| 5

0| 6

46

Maintaining Degree 0 Vertices

for i =1tondo Di] :=0; endfor
for i =1 to n do
x = Ail;
while x # null do
DO x.value] := D x.value] + 1;
X = X.hext;
endwhi | e

endf or

Time Complexity? O(n+m).

a7

ol 1 2 4
QJeue@ 1 2 :
1| 3 4 5
N
2

Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0 p A

48

Topo Sort using a Queue
(breadth-first)

After each vertex is output, when updating In-Degree array,
enqueue any vertex whose In-Degree becomes zero

Topological Sort Algorithm

Queue E D A

dequeuel enqueue? ol 1 2 4
Qut put 0| 2 3
S Re [E-EE
.- ‘ e 2 5
0Ol 6
49
Some Detall
Mai n Loop
whil e not Enpty(Q do
X := Dequeue(Q
Qut put (x)
y 1= Alx];
while y # null do
Dy.value] := Dy.value] - 1;
if Dy.value] = 0 then Enqueue(Qy.val ue);
y = y.next;
endwhi | e
endwhi | e

Time complexity? O(out_degree(x)) .
51

N

4.

Store each vertex’s In-Degree in an array D
Initialize queue with all “in-degree=0" vertices
While there are vertices remaining in the
queue:

(a) Dequeue and output a vertex

(b) Reduce In-Degree of all vertices adjacent to it by 1

(c) Enqueue any of these vertices whose In-Degree
became zero

If all vertices are output then success,
otherwise there is a cycle.

50

Topological Sort Analysis

Initialize In-Degree array: O(|V| + |E|)

Initialize Queue with In-Degree 0 vertices: O(|V])

Dequeue and output vertex:

> |V| vertices, each takes only O(1) to dequeue and
output: O(|V])

Reduce In-Degree of all vertices adjacent to a vertex

and Enqueue any In-Degree 0 vertices:

> O(|E|]) (total out_degree of all vertices)

For input graph G=(V,E) run time = O(|V| + |E]|)

> Linear time!
52

Topo Sort using a Stack
(depth-first)

After each vertex is output, when updating In-Degree array,
push any vertex whose In-Degree becomes zero

St ack E D A

pop l push ol 1 2 4
Qut put 0| 2 3
1| 3 4 5
o e 0| 6

53

