
Graph Algorithms –
Introduction and
Topological Sort

CSE 373
Data Structures

Unit 12

Reading: Sections 9.1 and 9.2

2

What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of
“graph”

3

Graphs

• Graphs are composed of
› Nodes (vertices)

› Edges (arcs) node

edge

4

Varieties

• Nodes
› Labeled or unlabeled

• Edges
› Directed or undirected

› Labeled or unlabeled

5

Motivation for Graphs
• Consider the data structures we have

looked at so far…

• Linked list: nodes with 1 incoming
edge + 1 outgoing edge

• Binary trees/heaps: nodes with 1
incoming edge + 2 outgoing edges

• B-trees: nodes with 1 incoming edge
+ multiple outgoing edges

10

96 99

94

97

Value Next
node

Value Next
node

3 5

6

Motivation for Graphs

• How can you generalize these data
structures?

• Consider data structures for representing
the following problems…

7

CSE Course Prerequisites at
UW

321143

142

322

326

341370

378

401

421Nodes = courses
Directed edge = prerequisite

8

Representing a Maze

S

Nodes = junctions
Edge = door or passage

S

E

B

E

9

Representing Electrical
Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor

10

Precedence
S1 a=0;

S2 b=1;

S3 c=a+1

S4 d=b+a;

S5 e=d+1;

S6 e=c+d;

3

1 2

6

5

4Which statements must execute before S6?

S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements

11

Information Transmission in a
Computer Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140

181
30

16

56

12

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on
connecting highway

UW

13

Graph Definition

• A graph is simply a collection of nodes plus
edges
› Linked lists, trees, and heaps are all special cases

of graphs

• The nodes are known as vertices (node =
“vertex”)

• Formal Definition: A graph G is a pair (V, E)
where
› V is a set of vertices or nodes
› E is a set of edges that connect vertices

14

Graph Example

• Here is a directed graph G = (V, E)
› Each edge is a pair (v1, v2), where v1, v2 are vertices

in V
› V = {A, B, C, D, E, F}

E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED

F

15

Directed vs Undirected
Graphs

• If the order of edge pairs (v1, v2) matters, the graph is
directed (also called a digraph): (v1, v2) ≠ (v2, v1)

• If the order of edge pairs (v1, v2) does not matter, the
graph is called an undirected graph: in this case, (v1,
v2) = (v2, v1)

v1
v2

v1 v2

v3

v3

16

Undirected Terminology

• Two vertices u and v are adjacent in an
undirected graph G if {u,v} is an edge in G
› edge e = {u,v} is incident with vertex u and vertex

v

• The degree of a vertex in an undirected
graph is the number of edges incident with it
› a self-loop counts twice (both ends count)
› denoted with deg(v)

17

Undirected Terminology

A

B
C

ED

F

Degree = 3

Degree = 0

B is adjacent to C and C is adjacent to B
(A,B) is incident
to A and to B

Self-loop

18

Directed Terminology

• Vertex u is adjacent to vertex v in a directed
graph G if (u,v) is an edge in G
› vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
› vertex v is the terminal (or end) vertex of (u,v)

• Degree
› in-degree is the number of edges with the vertex

as the terminal vertex
› out-degree is the number of edges with the vertex

as the initial vertex

19

Directed Terminology

A

B
C

ED

F

In-degree = 2
Out-degree = 1

In-degree = 0
Out-degree = 0

B adjacent to C and C adjacent from B

20

Handshaking Theorem

• Let G=(V,E) be an undirected graph with
|E|=m edges. Then

• Proof: Every edge contributes +1 to the
degree of each of the two vertices it is
incident with
› number of edges is exactly half the sum of deg(v)
› the sum of the deg(v) values must be even

�
∈

=
Vv

deg(v)2m

21

• Space and time are analyzed in terms of:

• Number of vertices, n = |V| and

• Number of edges, m = |E|

• There are at least two ways of representing
graphs:

• The adjacency matrix representation

• The adjacency list representation

Graph Representations

22

A B C D E F

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0 M(v, w) =
1 if (v, w) is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

ED
F

Adjacency Matrix

23

A B C D E F

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

A

B

C

D

E

F

Space = |V|2

M(v, w) =
1 if (v, w) is in E

0 otherwise

A

B
C

ED
F

Adjacency Matrix for a
Digraph

24

B D

B D

C

A C E

D

E

A C

A

B

C

D

E

F

A

B
C

ED
F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that (v, w) is in E
a b

Adjacency List

25

B D

E

D

C

a b

A

B

C

D

E

F

E

A

B
C

ED
F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|

Adjacency List for a Digraph

26

Trees

• An undirected graph is a tree if it is connected
and contains no cycles.

• A directed graph is a directed tree if it has a root
and its underlying undirected graph is a tree.

• r∈V is a root if every vertex v∈V is reachable
from r; i.e., there is a directed path which starts in
r and ends in v.

�

�
�

�

�

�

�
�

�
�

�

�

�

�

�		

27

Alternative Definitions of
Undirected Trees

• G is cycles-free, but if any new edge is added to G, a
cycle is formed.

• for every pair of vertices u,v, there is a unique, simple
path from u to v.

• G is connected, but if any edge is deleted from G, the
connectivity of G is interrupted.

• G is connected and has n–1 edges.
�

�
�

�

�

�

�

28

G is a tree � G is cycle-free and
has n – 1 edges.

�We show, by induction on n, that if G is a tree (cycle-free
and connected), then its number of edges is n–1.

Base: n=1

Step: Assume that it is true for all n < m, and let G be a tree
with m vertices. Delete from G any edge e. By definition
(3), G is not connected any more, and is broken into two
connected components each of which is cycle-free and
therefore is a tree. By the inductive hypothesis, each
component has one edge less than the number of
vertices. Thus, both have m–2 edges. Add back e, to get
m–1.

29

Topological Sort

321143
322

326

341370

378

401

421

Problem: Find an order in
which all these courses can
be taken.

Example: 142 à 143 à 378
à 370 à 321 à 341 à 322
à 326 à 421 à 401

In order to take a course, you must
take all of its prerequisites first

142

30

Given a digraph G = (V, E), find a linear ordering of
its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

A

B
C

F

D E

Topological Sort

31

A

B
C

F

D E

EA DFB C

Any linear ordering in which
all the arrows go to the right
is a valid solution

Topo sort - good example

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.

32

A

B
C

F

D E

DA EFB C

Any linear ordering in which
an arrow goes to the left
is not a valid solution

Topo sort - bad example

NO!

33

Paths and Cycles

• Given a digraph G = (V,E), a path is a
sequence of vertices v1,v2, …,vk such that:
› (vi,vi+1) in E for all 1 < i < k
› path length = number of edges in the path
› path cost = sum of costs of participating edges

• A path is a cycle if :
› k > 1 and v1 = vk

• G is acyclic if it has no cycles.

34

Only acyclic graphs can be
topologically sorted

• A directed graph with a cycle cannot be
topologically sorted.

A

B
C

F

D EThere is no
valid ordering
of A,B,C,D

35

Step 1: Identify vertices that have no incoming edges
• The “in-degree” of these vertices is zero

A

B
C

F

D E

Topo sort algorithm - 1

36

Step 1: Identify vertices that have no incoming edges
• If no such vertices, graph has only cycle(s)
• Topological sort not possible – Halt.

A

B
C

D
Example of an ‘only-
cycles’ graph

Topo sort algorithm - 1a

E

37

Step 1: Identify vertices that have no incoming edges
• Select one such vertex

A

B
C

F

D E

Select

Topo sort algorithm - 1b

38

A

B
C

F

D E

Step 2: Delete this vertex of in-degree 0 and all
its outgoing edges from the graph. Place it in the
output.

Topo sort algorithm - 2

A

39

A

B
C

F

D E

Repeat Step 1 and Step 2 until graph is empty
(or until HALT due to cycles-only’).

Select

Continue until done

40

A

B
C

F

D E

B

Select B. Copy to sorted list. Delete B and its edges.

Example (cont’) - B

41

A

C

F

D E

B C

Select C. Copy to sorted list. Delete C and its edges.

C

42

AF

D E

B C D

Select D. Copy to sorted list. Delete D and its edges.

D

43

AF

E

B C D E F

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

E, F

Yes, we could select F earlier (in any step).

The topological sort is not necessarily unique.

44

A B C D E F

Done

A

B
C

F

D E

45

A

B
C

F

D E

2 4

5

54

3

1

2

3

4

5

6

Assume adjacency list
representation

Implementation

A B C D E F
1 2 3 4 5 6Translation

array
value next

46

0

1

0

2

2

1In-Degree
array; or add a
field to array A

Calculate In-degrees

2 4

5

54

3

1

2

3

4

5

6

AD

47

Calculate In-degrees

f or i = 1 t o n do D[i] : = 0; endf or
f or i = 1 t o n do

x : = A[i] ;
whi l e x ≠ nul l do

D[x. val ue] : = D[x. val ue] + 1;
x : = x. next ;

endwhi l e
endf or

Time Complexity? O(n+m).

48

Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0

1Queue 6

1

2 3
6

4 5

Maintaining Degree 0 Vertices

0

1

0

2

2

1

2 4

5

54

3

1

2

3

4

5

6

AD

49

After each vertex is output, when updating In-Degree array,
enqueue any vertex whose In-Degree becomes zero

1

Queue 6

Output

2
dequeue enqueue

1

2 3
6

4 5

Topo Sort using a Queue
(breadth-first)

0

0

0

1

2

1

2 4

5

54

3

1

2

3

4

5

6

AD

50

Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the

queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1
(c) Enqueue any of these vertices whose In-Degree

became zero

4. If all vertices are output then success,
otherwise there is a cycle.

51

Some Detail

Mai n Loop
whi l e not Empt y(Q) do

x : = Dequeue(Q)
Out put (x)
y : = A[x] ;
whi l e y ≠ nul l do

D[y. val ue] : = D[y. val ue] – 1;
i f D[y. val ue] = 0 t hen Enqueue(Q, y. val ue) ;
y : = y. next ;

endwhi l e
endwhi l e

Time complexity? O(out_degree(x)) .
52

Topological Sort Analysis

• Initialize In-Degree array: O(|V| + |E|)
• Initialize Queue with In-Degree 0 vertices: O(|V|)
• Dequeue and output vertex:

› |V| vertices, each takes only O(1) to dequeue and
output: O(|V|)

• Reduce In-Degree of all vertices adjacent to a vertex
and Enqueue any In-Degree 0 vertices:
› O(|E|) (total out_degree of all vertices)

• For input graph G=(V,E) run time = O(|V| + |E|)
› Linear time!

53

After each vertex is output, when updating In-Degree array,
push any vertex whose In-Degree becomes zero

1

Stack 2

Output

6
pop push

1

2 3
6

4 5

Topo Sort using a Stack
(depth-first)

0

0

0

1

2

1

2 4

5

54

3

1

2

3

4

5

6

AD

