Graph Algorithms – Introduction and Topological Sort

CSE 373 Data Structures Unit 12

Reading: Sections 9.1 and 9.2

What are graphs?

• Yes, this is a graph....

 But we are interested in a different kind of "graph"

Graphs

- Graphs are composed of
 - › Nodes (vertices)
 - Edges (arcs)

Varieties

- Nodes
 - > Labeled or unlabeled
- Edges
 - > Directed or undirected
 - > Labeled or unlabeled

Motivation for Graphs

- Consider the data structures we have looked at so far...
- <u>Linked list</u>: nodes with 1 incoming edge + 1 outgoing edge
- <u>Binary trees/heaps</u>: nodes with 1 incoming edge + 2 outgoing edges
- <u>B-trees</u>: nodes with 1 incoming edge + multiple outgoing edges

5

Motivation for Graphs

- How can you generalize these data structures?
- Consider data structures for representing the following problems...

CSE Course Prerequisites at UW

Representing a Maze

Nodes = junctions Edge = door or passage

7

Representing Electrical Precedence Circuits Switch Battery / S_1 a=0; S_2 b=1; S₃ c=a+1 S_4 d=b+a; S₅ e=d+1; S₆ e=c+d; Which statements must execute before S_e? 3 S₁, S₂, S₃, S₄ \sim Nodes = battery, switch, resistor, etc. Resistor Nodes = statements Edges = connections Edges = precedence requirements 9 10

Traffic Flow on Highways

Graph Definition

- A graph is simply a collection of nodes plus edges
 - Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph *G* is a pair (*V*, *E*) where
 - > V is a set of vertices or nodes
 - > E is a set of edges that connect vertices
- 13

Graph Example

Here is a directed graph G = (V, E)
Each edge is a pair (v₁, v₂), where v₁, v₂ are vertices in V
V = {A, B, C, D, E, F}
E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}
B
C
F

Directed vs Undirected Graphs

If the order of edge pairs (v₁, v₂) matters, the graph is directed (also called a digraph): (v₁, v₂) ≠ (v₂, v₁)

If the order of edge pairs (v₁, v₂) does not matter, the graph is called an undirected graph: in this case, (v₁, v₂) = (v₂, v₁)

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if {u,v} is an edge in G
 - > edge e = {u,v} is incident with vertex u and vertex
 v
- The degree of a vertex in an undirected graph is the number of edges incident with it
 - a self-loop counts twice (both ends count)
 - denoted with deg(v)

Undirected Terminology

Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an edge in G
 - vertex u is the initial vertex of (u,v)
- Vertex v is adjacent from vertex u
 vertex v is the terminal (or end) vertex of (u,v)
- Degree
 - in-degree is the number of edges with the vertex as the terminal vertex
 - out-degree is the number of edges with the vertex as the initial vertex

18

Directed Terminology

Handshaking Theorem

 Let G=(V,E) be an undirected graph with |E|=m edges. Then

 $2m = \sum_{v \in V} deg(v)$

- Proof: Every edge contributes +1 to the degree of each of the two vertices it is incident with
 - number of edges is exactly half the sum of deg(v)
 - > the sum of the deg(v) values must be even

Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices, n = |V| and
 - Number of edges, m = |E|
- There are at least two ways of representing graphs:
 - The adjacency matrix representation

21

• The adjacency list representation

Adjacency Matrix

Adjacency List

Adjacency List for a Digraph

Alternative Definitions of Undirected Trees

- G is cycles-free, but if any new edge is added to G, a cycle is formed.
- for every pair of vertices u,v, there is a unique, simple path from u to v.
- G is connected, but if any edge is deleted from G, the connectivity of G is interrupted.
- G is connected and has n-1 edges.

Trees

- An undirected graph is a tree if it is connected and contains no cycles.
- A directed graph is a directed tree if it has a root and its underlying undirected graph is a tree.
- r∈V is a root if every vertex v∈V is reachable from r; i.e., there is a directed path which starts in r and ends in v.

G is a tree \Rightarrow G is cycle-free and has n-1 edges.

 \Rightarrow We show, by induction on n, that if G is a tree (cycle-free and connected), then its number of edges is n–1. Base: n=1

Step: Assume that it is true for all n < m, and let G be a tree with m vertices. Delete from G any edge e. By definition (3), G is not connected any more, and is broken into two connected components each of which is cycle-free and therefore is a tree. By the inductive hypothesis, each component has one edge less than the number of vertices. Thus, both have m–2 edges. Add back e, to get m–1. 28

Topological Sort

Topological Sort

Given a digraph G = (V, E), find a linear ordering of its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

Topo sort - good example

Note that F can go anywhere in this list because it is not connected. Also the solution is not unique.

Topo sort - bad example

Any linear ordering in which an arrow goes to the left is not a valid solution

Paths and Cycles

- Given a digraph G = (V,E), a path is a sequence of vertices v₁,v₂, ...,v_k such that:
 -) (v_i, v_{i+1}) in E for all $1 \le i < k$
 - > path length = number of edges in the path
 - > path cost = sum of costs of participating edges
- A path is a cycle if :
 - \cdot k > 1 and v₁ = v_k
- G is acyclic if it has no cycles.

Only acyclic graphs can be topologically sorted

• A directed graph with a cycle cannot be topologically sorted.

Topo sort algorithm - 1

<u>Step 1</u>: Identify vertices that have no incoming edges • The "in-degree" of these vertices is zero

Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges

- If no such vertices, graph has only cycle(s)
- Topological sort not possible Halt.

34

Topo sort algorithm - 1b

<u>Step 1</u>: Identify vertices that have no incoming edges • Select one such vertex

37

Topo sort algorithm - 2

<u>Step 2</u>: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

38

Continue until done

Repeat <u>Step 1</u> and <u>Step 2</u> until graph is empty (or until HALT due to cycles-only').

Example (cont') - B

Select B. Copy to sorted list. Delete B and its edges.

Select C. Copy to sorted list. Delete C and its edges.

Select D. Copy to sorted list. Delete D and its edges.

E, F

Select E. Copy to sorted list. Delete E and its edges. Select F. Copy to sorted list. Delete F and its edges.

Yes, we could select F earlier (in any step). The topological sort is not necessarily unique.

Implementation

Calculate In-degrees

46

Calculate In-degrees

```
for i = 1 to n do D[i] := 0; endfor
for i = 1 to n do
    x := A[i];
    while x ≠ null do
        D[x.value] := D[x.value] + 1;
        x := x.next;
    endwhile
endfor
```

Time Complexity? O(n+m).

Maintaining Degree 0 Vertices

Topo Sort using a Queue (breadth-first)

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree becomes zero

Topological Sort Algorithm

- 1. Store each vertex's In-Degree in an array D
- 2. Initialize queue with all "in-degree=0" vertices
- 3. While there are vertices remaining in the queue:

(a) Dequeue and output a vertex

- (b) Reduce In-Degree of all vertices adjacent to it by 1
- (c) Enqueue any of these vertices whose In-Degree became zero
- 4. If all vertices are output then success, otherwise there is a cycle.

50

Some Detail

```
Main Loop
while notEmpty(Q) do
  x := Dequeue(Q)
  Output(x)
  y := A[x];
  while y ≠ null do
    D[y.value] := D[y.value] - 1;
    if D[y.value] = 0 then Enqueue(Q,y.value);
    y := y.next;
    endwhile
endwhile
```

Time complexity? O(out_degree(x)) .

Topological Sort Analysis

- Initialize In-Degree array: O(|V| + |E|)
- Initialize Queue with In-Degree 0 vertices: O(|V|)
- Dequeue and output vertex:
 - |V| vertices, each takes only O(1) to dequeue and output: O(|V|)
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 - > O(|E|) (total out_degree of all vertices)
- For input graph G=(V,E) run time = O(|V| + |E|)
 - > Linear time!

Topo Sort using a Stack (depth-first) After each vertex is output, when updating In-Degree array,

push any vertex whose In-Degree becomes zero

