Graph Algorithms – Introduction and Topological Sort

CSE 373 Data Structures Unit 12

Reading: Sections 9.1 and 9.2

What are graphs?

• Yes, this is ^a graph….

• But we are interested in a different kind of "graph"

Graphs

- Graphs are composed of
	- › Nodes (vertices)
	- [>] Edges (arcs) node

Varieties

- Nodes
	- › Labeled or unlabeled
- Edges
	- › Directed or undirected
	- › Labeled or unlabeled

Motivation for Graphs

- • Consider the data structures we have looked at so far…
- •• Linked list: nodes with 1 incoming edge ⁺ 1 outgoing edge
- • Binary trees/heaps: nodes with 1 incoming edge ⁺ 2 outgoing edges
- •• **B-trees: nodes with 1 incoming edge** + multiple outgoing edges

5

Motivation for Graphs

- How can you generalize these data structures?
- Consider data structures for representing the following problems…

CSE Course Prerequisites at UW

Representing ^a Maze

Nodes ⁼ junctions Edge ⁼ door or passage

7

Representing Electrical Precedence Circuits Battery Switch S_1 **a=0; 6** S_2 **b=1;** S_{3} **c=a+1 5S4 d=b+a;** S_{κ} **e=d+1;** S_6 **e=c+d; 4**Which statements must execute before $\mathsf{S}_6?$ | $\qquad \qquad \bullet$ 3 $\qquad \nearrow \qquad \nearrow$ **3** S_1 , S_2 , S_3 , S_4 W ResistorNodes ⁼ battery, switch, resistor, etc. Nodes ⁼ statements Edges ⁼ connections Edges ⁼ precedence requirements **² 1**10

Information Transmission in a Computer Network

Traffic Flow on Highways

Graph Definition

- A graph is simply ^a collection of nodes plus edges
	- \rightarrow Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node ⁼ "vertex")
- $\bullet~$ Formal Definition: A graph *G* is a pair (*V, E*) where
	- \rightarrow V is a set of vertices or nodes
	- \rightarrow $\,E$ is a set of edges that connect vertices
- 13

Graph Example

14 $\bullet~$ Here is a directed graph G = (*V*, *E*) \rightarrow Each <u>edge</u> is a pair (v_1 , v_2), where v_1 , v_2 are vertices in V \rightarrow $V = \{A, B, C, D, E, F\}$ $E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$ ABC $\sum_{i=1}^{n}$ $D \rightarrow E$ F

Directed vs Undirected **Graphs**

• If the order of edge pairs (v_1, v_2) matters, the graph is directed (also called a digraph): $(v_1, v_2) \neq (v_2, v_1)$

• If the order of edge pairs (v_1, v_2) does not matter, the graph is called an undirected graph: in this case, $(v_1,$ v_2) = (v_2 , v_1)

Undirected Terminology

- Two vertices ^u and ^v are adjacent in an undirected graph G if {u,v} is an edge in G
	- \rightarrow edge e = {u,v} is incident with vertex u and vertex v
- The degree of ^a vertex in an undirected graph is the number of edges incident with it
	- › a self-loop counts twice (both ends count)
	- \rightarrow denoted with deg(v)

Undirected Terminology

Directed Terminology

- Vertex u is adjacent to vertex ^v in ^a directed graph G if (u,v) is an edge in G
	- \rightarrow vertex u is the initial vertex of (u,v)
- Vertex ^v is adjacent from vertex ^u \rightarrow vertex v is the terminal (or end) vertex of (u,v)
- Degree
	- \rightarrow in-degree is the number of edges with the vertex as the terminal vertex
	- \rightarrow out-degree is the number of edges with the vertex as the initial vertex

18

Directed Terminology

Handshaking Theorem

• Let G=(V,E) be an undirected graph with |E|=m edges. Then

> $=\sum_{\mathsf{v}\in\mathsf{V}}$ ∈2m = \sum deg(v)

- Proof: Every edge contributes +1 to the degree of each of the two vertices it is incident with
	- \rightarrow number of edges is exactly half the sum of deg(v)
	- \rightarrow the sum of the deg(v) values must be even

Graph Representations

- • Space and time are analyzed in terms of:
	- \bullet Number of vertices, $n = |V|$ and
	- \bullet Number of edges, $m = |E|$
- • There are at least two ways of representing graphs:
	- \bullet • The *adjacency matrix* representation

21

 \bullet • The *adjacency list* representation

Adjacency Matrix

Adjacency List

Trees

• An undirected graph is ^a tree if it is connected

• A directed graph is ^a directed tree if it has ^a root and its underlying undirected graph is ^a tree. • r∈V is ^a root if every vertex ^v∈V is reachable

from r; i.e., there is ^a directed path which starts in

E

В

G

F

and contains no cycles.

r and ends in v.

E

В

G

F

Adjacency List for ^a Digraph

G is a tree \Rightarrow G is cycle-free and has *n* – 1 edges.

A

D) root

 σ

 \Rightarrow We show, by induction on n, that if G is a tree (cycle-free and connected), then its number of edges is n–1. Base: n=1

26

A

D

 $\mathcal C$

28Step: Assume that it is true for all $n < m$, and let G be a tree with m vertices. Delete from G any edge ^e. By definition (3), G is not connected any more, and is broken into two connected components each of which is cycle-free and therefore is ^a tree. By the inductive hypothesis, each component has one edge less than the number of vertices. Thus, both have m–2 edges. Add back ^e, to get m–1.

Alternative Definitions of Undirected Trees

- G is cycles-free, but if any new edge is added to G, ^a cycle is formed.
- for every pair of vertices u,v, there is ^a unique, simple path from ^u to v.
- G is connected, but if any edge is deleted from G, the connectivity of G is interrupted.
- G is connected and has n–1 edges.

Topological Sort

Topological Sort

Given a digraph G = (*V, E*), find a linear ordering of its vertices such that:

for any edge (*v, w*) in E, *v* precedes *w* in the ordering

Topo sort - good example

Note that F can go anywhere in this list because it is not connected. Also the solution is not unique.

Topo sort - bad example

Any linear ordering in which an arrow goes to the left is not a valid solution

Paths and Cycles

- Given ^a digraph G ⁼ (V,E), ^a path is ^a sequence of vertices $\mathsf{v}_1,\mathsf{v}_2,\, ...,\mathsf{v}_\mathsf{k}$ such that:
	- › $({\sf v}_{{\sf j}},{\sf v}_{{\sf j}+1})$ in E for all 1 \le i < k
	- \rightarrow path length = number of edges in the path
	- \rightarrow path cost = sum of costs of participating edges
- A path is ^a cycle if :
	- \rightarrow k > 1 and v₁ = v_k
- G is acyclic if it has no cycles.

Only acyclic graphs can be topologically sorted

• A directed graph with ^a cycle cannot be topologically sorted.

Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges

• The "in-degree" of these vertices is zero

Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges

- \bullet If *no such vertices*, graph has only <u>cycle(s)</u>
- Topological sort not possible Halt.

34

Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges • Select one such vertex

37

Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

38

Continue until done

Repeat Step 1 and Step 2 until graph is empty (or until HALT due to cycles-only').

Example (cont') - B

Select B. Copy to sorted list. Delete B and its edges.

D

Select D. Copy to sorted list. Delete D and its edges.

E, F

Select E. Copy to sorted list. Delete E and its edges. Select F. Copy to sorted list. Delete F and its edges.

Yes, we could select F earlier (in any step).

The topological sort is not necessarily unique.

Implementation

Calculate In-degrees

46

Calculate In-degrees

```
for i = 1 to n do D[i] := 0; endfor
for i = 1 to n do
  x := A[i];
  while x ≠ null do
    D[x.value] := D[x.value] + 1;x := x.next;
 endwhileendfor
```
Time Complexity? O(n+m).

Maintaining Degree 0 Vertices

Topo Sort using ^a Queue (breadth-first)

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree becomes zero

Topological Sort Algorithm

- 1. Store each vertex's In-Degree in an array D
- 2.. Initialize queue with all "in-degree=0" vertices
- 3. While there are vertices remaining in the queue:

(a) Dequeue and output ^a vertex

- (b) Reduce In-Degree of all vertices adjacent to it by 1
- (c) Enqueue any of these vertices whose In-Degree became zero
- 4. If all vertices are output then success, otherwise there is ^a cycle.

50

Some Detail

```
Main Loop
while notEmpty(Q) do
  x := Dequeue(Q)
 Output(x)y := A[x];while y ≠ null do
    D[y.value] := D[y.value] - 1;if D[y.value] = 0 then Enqueue(Q,y.value);
   y := y.next;endwhileendwhile
```

```
Time complexity? O(out_degree(x)) .
```
Topological Sort Analysis

- Initialize In-Degree array: O(|V| ⁺ |E|)
- •• Initialize Queue with In-Degree 0 vertices: O(|V|)
- • Dequeue and output vertex:
	- › |V| vertices, each takes only O(1) to dequeue and output: O(|V|)
- Reduce In-Degree of all vertices adjacent to ^a vertex and Enqueue any In-Degree 0 vertices:
	- › O(|E|) (total out_degree of all vertices)
- For input graph G=(V,E) run time ⁼ O(|V| ⁺ |E|)
	- › Linear time!

Topo Sort using ^a Stack (depth-first)

After each vertex is output, when updating In-Degree array, push any vertex whose In-Degree becomes zero

