
Fundamentals

CSE 373
Data Structures

Unit 5

2

Mathematical Background

• We will review:
› Logs and exponents

› Series
› Recursion

› Motivation for Algorithm Analysis

3

Powers of 2

• Many of the numbers we use in Computer
Science are powers of 2

• Binary numbers (base 2) are easily
represented in digital computers
› each "bit" is a 0 or a 1

› 20=1, 21=2, 22=4, 23=8, 24=16,…, 210 =1024 (1K)
› An n-bit wide field can hold 2n positive integers:

• 0 ≤ k ≤ 2n-1

4

Unsigned binary numbers

• For unsigned numbers in a fixed width
field
› the minimum value is 0
› the maximum value is 2n-1, where n is the

number of bits in the field
› The value is

• Each bit position represents a power of
2 with ai = 0 or ai = 1.

• Example: 00100100 represents
4+32=36

ini

i ia 2
1

0�
−=

=

5

Logs and exponents

• Definition: log2 x = y means x = 2y

› 8 = 23, so log28 = 3

› 65536= 216, so log265536 = 16

• Notice that log2x tells you how many bits
are needed to hold x values
› 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255
› log2256 = 8

x, 2x and log2x

2x and log2x
8

Floor and Ceiling

� �X

� �X

Floor function: the largest integer < X

Ceiling function: the smallest integer > X

� � � � � � 2232.722.7 =−=−=

� � � � � � 2222.332.3 =−=−=

9

Facts about Floor and Ceiling

� �
� �

� � � � integer an is n ifnn/2n/23.

1XXX2.

XX1X1.

=+
+<≤

≤<−

10

Properties of logs (of the
mathematical kind)

• Claim: A=2log
2
A

• Proof: let x=log2A
A= 2x = 2log

2
A

Therefore, a program with time
complexity O(2log

2
n) is a linear

program (and not exponential as it
might seem in a first glance).

11

Properties of logs (of the
mathematical kind)

• We will assume logs to base 2 unless
specified otherwise

• log AB = log A + log B
› A=2log2A and B=2log2B

› AB = 2log2A • 2log2B = 2log2A+log2B

› so log2AB = log2A + log2B

› [note: log AB ≠≠≠≠ log A•log B]

12

Other log properties

• log A/B = log A – log B
• log (AB) = B log A
• log log X < log X < X for all X > 0

› log log X = Y means

› log X grows slower than X
• called a “sub-linear” function

X2
Y2 =

13

A log is a log is a log

• Any base x log is equivalent to base 2 log
within a constant factor

xlog
Blog

Blog

BlogBlogxlog

22

2)(2

Bx

BlogBlog

2

2
x

2x2

BlogBlogxlog

BlogBlogxlog

Blog

xx

2x2

2x2

x

=

=
=

=

=

=

xlog

Blog

2

2

2x

2B

=

=

14

Arithmetic Series

•

• The sum is
› S(1) = 1
› S(2) = 1+2 = 3
› S(3) = 1+2+3 = 6

•

�
=

=+++=
N

1i

iN21S(N) �

�
=

+=
N

1i 2
1)N(N

i Why is this formula useful
when you analyze algorithms?

15

Algorithm Analysis

• Consider the following program
segment:
x:= 0;

for i = 1 to N do

for j = 1 to i do

x := x + 1;

• What is the value of x at the end?

16

Analyzing the Loop

• Total number of times x is incremented
is the number of “instructions” executed
=

• You’ve just analyzed the program!
› Running time of the program is proportional

to N(N+1)/2 for all N
› O(N2)

�
=

+==+++
N

1i 2
1)N(N

i...321

17

Analyzing Mergesort

Mergesort(p : node pointer) : node pointer {
Case {
p = null : return p; //no elements
p.next = null : return p; //one element
else
d : duo pointer; // duo has two fields first,second
d := Split(p);
return Merge(Mergesort(d.first),Mergesort(d.second));

}
}

� � � � dn)n/2T()n/2T(T(n)

cT(1)T(0),

items. n sort to time the is T(n)

++≤
≤

18

Mergesort Analysis
Upper Bound

logn)O(n

nlogdncn

2n ifkdnnT(1)

kdn)T(n/22

3dn8T(n/8)

2dndn/4)4(2T(n/8)

2dn4T(n/4)

dn dn/2)2(2T(n/4)

2 of power a is n Assumingdn2T(n/2)T(n)

2

k

kk

=
+≤

=+=

+≤

+=
++≤

+=
++≤

+≤

�

n = 2k, k = log n

19

Recursion Used Badly

• Classic example: Fibonacci numbers Fn

0,1, 1, 2, 3, 5, 8, 13, 21, …

› F0 = 0 , F1 = 1 (Base Cases)
› Rest are sum of preceding two

Fn = Fn-1 + Fn-2 (n > 1)
Leonardo Pisano
Fibonacci (1170-1250)

20

Recursive Procedure for
Fibonacci Numbers

fib(n : integer): integer {

Case {
n < 0 : return 0;

n = 1 : return 1;

else : return fib(n-1) + fib(n-2);

}
}

• Easy to write: looks like the definition of
Fn

• But, can you spot the big problem?

21

Recursive Calls of Fibonacci
Procedure

• Re-computes fib(N-i) multiple times!
22

Fibonacci Analysis
Lower Bound

2)-T(n1)-T(nT(n)

1T(1)T(0),

fib(n). compute to time the is T(n)

+≥
≥

It can be shown by induction that T(n) > φ n-2

where
1.62

2
51 ≈+=φ

23

Iterative Algorithm for
Fibonacci Numbers

fib_iter(n : integer): integer {

fib0, fib1, fibresult, i : integer;

fib0 := 0; fib1 := 1;

case {

n < 0 : fibresult := 0;

n = 1 : fibresult := 1;

else :

for i = 2 to n do {
fibresult := fib0 + fib1;

fib0 := fib1;

fib1 := fibresult;

}

}

return fibresult;

} 24

Recursion Summary

• Recursion may simplify programming, but
beware of generating large numbers of
calls
› Function calls can be expensive in terms of

time and space

• Be sure to get the base case(s) correct!

• Each step must get you closer to the base
case

25

Motivation for Algorithm
Analysis

• Suppose you are
given two algorithms
A and B for solving a
problem

• The running times
TA(N) and TB(N) of A
and B as a function of
input size N are given

TA

TB

R
u n

 T
i m

e

Input Size N

Which is better?
26

More Motivation
• For large N, the running time of A and B

is:

Now which

algorithm would

you choose?R
u n

 T
i m

e

Input Size N

TA(N) = 50N

TB(N) = N2

27

Asymptotic Behavior

• The “asymptotic” performance as N → ∞,
regardless of what happens for small input
sizes N, is generally most important

• Performance for small input sizes may
matter in practice, if you are sure that small
N will be common forever

• We will compare algorithms based on how
they scale for large values of N

28

Order Notation (one more time)

• Mainly used to express upper bounds on time
of algorithms. “n” is the size of the input.

• T(n) = O(f(n)) if there are constants c and n0
such that T(n) < c f(n) for all n > n0.
› 10000n + 10 n log2 n = O(n log n)

› .00001 n2 ≠ O(n log n)

• Order notation ignores constant factors and
low order terms.

29

Why Order Notation

• Program performance may vary by a
constant factor depending on the
compiler and the computer used.

• In asymptotic performance (n →∞) the
low order terms are negligible.

30

Some Basic Time Bounds

• Logarithmic time is O(log n)
• Linear time is O(n)
• Quadratic time is O(n2)
• Cubic time is O(n3)
• Polynomial time is O(nk) for some k.
• Exponential time is O(cn) for some c > 1.

