Mathematical Background

* We will review:

Fundamentals > Logs and exponents
> Series
> Recursion
CSE 373 > Motivation for Algorithm Analysis
Data Structures
Unit 5
Powers of 2 Unsigned binary numbers

» For unsigned numbers in a fixed width
field

> the minimum value is 0

« Many of the numbers we use in Computer
Science are powers of 2

* Binary numbers (base 2) are easily > the maximum value is 2"-1, where n is the
represented in digital computers number of bits in the field
> each "bit"isaOoral > Thevalueis Y, _. a2
> 20=1, 21=2, 22=4, 23=8, 24=16,..., 210=1024 (1K) » Each bit position represents a power of
> An n-bit wide field can hold 2" positive integers: 2 witha;= Oora = 1.
« 0<ksg2n-1 « Example: 00100100 represents

5 4+32=36

Logs and exponents

 Definition: log, Xx =y means x = 2Y

> 8 =

23,s01lo0g,8 =3

> 65536= 216, so l0og,65536 = 16

 Notice that log,x tells you how many bits

are needed to hold x values

> 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255

> 109,256 = 8

1200

1000

800

600

400

200

=2

¥ = log,x

200 400 600 800 1000

2* and log,X

1200

X, 2¥ and log,x

Floor and Ceiling

_XJ Floor function: the largest integer < X

12.7]=2

|-2.7]=-3

12]=2

’_X—| Ceiling function: the smallest integer > X

[2.3]=3

[-2.3]=-2

2]=2

Facts about Floor and Ceiling

1. X-1<|X]<X
2. X<g[X]<x+1
3. |n/2]+[n/2]=n ifnisaninteger

Properties of logs (of the

Properties of logs (of the
mathematical kind)

mathematical kind)

» We will assume logs to base 2 unless
specified otherwise

* log AB =1log A +log B
> A=2109,A and B=2/09,8
> AB = 2l09,A ¢ 2log,B = 2log,A+log,B

> so log,AB =log,A + log,B

> [note: log AB # log Aelog B]

11

e Claim: A=209,A
* Proof: let x=log,A
A= 2x= 2'092A
Therefore, a program with time
complexity O(2'°%.") is a linear

program (and not exponential as it
might seem in a first glance).

10

Other log properties

* log A/B=1log A-logB

* log (AB)=Blog A

* loglog X<log X< Xforall X>0
> log log X = Y means 22" =X

> log X grows slower than X
 called a “sub-linear” function

12

Alogisalogis alog Arithmetic Series

N

« Any base x log is equivalent to base 2 log + SN)=1+2+..+N=D
within a constant factor . The sum is
log,B =log,B

> S(1) =1

B = 2008 x°9:8 =B > S(2)=1+2=3
X = 2I0g2x (2|092X)|OQXB = 2I0ng N S(3) =1+243=6
2Iog2xlogXB - 2Iong
N +
log,x log,B =log,B . i= N(N+1) Why is this formula useful
log,B i=1 2 when you analyze algorithms?
log,B =—2
log, X
13 14
Algorithm Analysis Analyzing the Loop
« Consider the following program « Total number of times x is incremented
segment: Is the number of “instructions” executed
x:= 0; = 142434 :ii:N(N+1)
for i =1 to Ndo I 2
for j =1toi do
X 1= x + 1
.) T |
* What is the value of x at the end? * You've just analyzed the program!

> Running time of the program is proportional
to N(N+1)/2 for all N
> O(N?)

15 16

Mergesort Analysis

Analyzing Mergesort Upper Bound

Mergesort (p : node pointer) : node pointer { T(n) <2T(n/2) +dn Assuming nis a power of 2

Case {
p=null : return p; //no elenments SZ(ZT(nM) +dn/2) +dn
p.next = null : return p; //one el enent =4T(n/4) +2dn
el se
d : duo pointer; // duo has two fields first,second < 4(2T(n/8) +dn/4) +2dn
d:=Split(p); =8T(n/8) +3dn
return Merge(Mergesort(d.first), Mergesort (d.second)); .
} :
J T(n)is the time to sort nitems. < 2T(n/2%) +kdn
T(0),T(1)<c =nT(1) +kdn if n=2" n=2%k=logn
T(n) < T(n/2)+ T([n/2])+dn <cn+dnlog,n
=0O(n logn)
17 18

Recursive Procedure for

Recursion Used Badly Eibonacci Numbers

 Classic example: Fibonacci numbers F, fib(n : integer): integer {
Case {
n<0: return O;
n=1: return 1,
else : return fib(n-1) + fib(n-2);

0,1,1,23,5/8,13,21, .. Doos

> Fo=0, F, = 1 (Base Cases) .
> Rest are sum of preceding two . s, « Easy to write: looks like the definition of
F.=F.+tF. (n>1) Fibonacci (1170-1250) =
n

» But, can you spot the big problem?

19 20

Recursive Calls of Fibonacci
Procedure

N B
N1 &
@\ E
@ e
@ DO® @

» Re-computes fib(N-i) multiple times!

21

Iterative Algorithm for
Fibonacci Numbers

Fibonacci Analysis
Lower Bound

fib_iter(n : integer): integer {

fibo, fibl, fibresult, i : integer;
fib0 :=0; fibl := 1;
case {

n<o0: fibresult :=
n=1: fibresult :=
el se :
for i =2 to n do {
fibresult := fib0 + fibil;
fibo := fibil;
fibl := fibresult;
}

0
1

}

return fibresult

T(n) is the time to compute fib(n).
T(0),T(1) =1
T(N)=T(n-1)+T(n-2)

It can be shown by induction that T(n) > @"-2

where
1++/5

= =1.62
¢ 2

Recursion Summary

22

» Recursion may simplify programming, but

beware of generating large numbers of
calls

> Function calls can be expensive in terms of
time and space

* Be sure to get the base case(s) correct!
» Each step must get you closer to the base

case

24

Motivation for Algorithm
Analysis

e Suppose you are
given two algorithms
A and B for solving a
problem

* The running times
TA(N) and Tz(N) of A
and B as a function of
input size N are given

o)
E

=
C 250
>
o

45

]

400!

350,

300

g 8

151

100

50

Tg

2

4 6 B 10 12 14

Input Size N
Which is better?

25

Asymptotic Behavior

* The “asymptotic” performance as N — oo,
regardless of what happens for small input
sizes N, is generally most important

» Performance for small input sizes may
matter in practice, if you are sure that small

N will be common forever

» We will compare algorithms based on how
they scale for large values of N

27

More Motivation

Run Time

5000

e For large N, the running time of A and B

4500

4000

3500

3000

2500

2000

1500

1000

5001

Now which
T,(N) = 50N | algorithm would
- you choose?

Tg(N) = N2

10— 20 30 40 50 60 70 80 90 100

Input Size N
26

Order Notation (one more time)

* Mainly used to express upper bounds on time
of algorithms. “n” is the size of the input.

* T(n) = O(f(n)) if there are constants ¢ and n,
such that T(n) < c f(n) for all n > n,,.
> 10000n + 10 nlog, n = O(n log n)
> .00001 n?2 # O(n log n)

» Order notation ignores constant factors and
low order terms.

28

Why Order Notation

* Program performance may vary by a
constant factor depending on the
compiler and the computer used.

* In asymptotic performance (n — o) the
low order terms are negligible.

29

Some Basic Time Bounds

Logarithmic time is O(log n)

Linear time is O(n)

Quadratic time is O(n?)

Cubic time is O(n3)

Polynomial time is O(n¥) for some k.
Exponential time is O(c") for some c > 1.

30

