Fundamentals

CSE 373 Data Structures Unit 5

• We will review:

- › Logs and exponents
- › Series
- › Recursion
- › Motivation for Algorithm Analysis

Powers of 2

- Many of the numbers we use in Computer Science are powers of 2
- Binary numbers (base 2) are easily represented in digital computers
	- › each "bit" is a 0 or a 1
	- › 20=1, 21=2, 22=4, 23=8, 24=16,…, 210 =1024 (1K)
	- \rightarrow An n-bit wide field can hold 2ⁿ positive integers:
		- 0 ≤ k ≤ 2n-1

Unsigned binary numbers

- For unsigned numbers in ^a fixed width field
	- \rightarrow the minimum value is 0
	- \rightarrow the maximum value is 2ⁿ-1, where n is the number of bits in the field
	- \rightarrow The value is $\sum_{i=n-1}^{i=n-1} a_i 2^{i}$ $\sum_{i=0}^{i=n-1} a_i 2$
- Each bit position represents ^a power of 2 with a_i $=$ 0 or a_i $=$ 1.
- Example: 00100100 represents $4 + 32 = 36$

4

Logs and exponents

- Definition: log $_2$ x = y means x = 2^y $9.8 = 2^3$, so $log_2 8 = 3$ \rightarrow 65536= 2¹⁶, so log₂65536 = 16
- $\bullet\,$ Notice that log $_2$ x tells you how many bits are needed to hold ^x values
	- \rightarrow 8 bits holds 256 numbers: 0 to 2⁸-1 = 0 to 255

5

 \rightarrow log $_2$ 256 = 8

x, 2^x and log_2x

2× and log $_2$ x

Floor and Ceiling

 $\lfloor \mathsf{X} \rfloor$ X Floor function: the largest integer <u><</u> X Ceiling function: the smallest integer \geq X $\begin{bmatrix} 2.7 \\ = 2 \\ -2.7 \end{bmatrix} = -3$ $\begin{bmatrix} 2 \\ = 2 \\ -2.7 \end{bmatrix} = -3$ $\begin{bmatrix} 2.3 \\ = 3 \\ \end{bmatrix} = 3 \quad \begin{bmatrix} -2.3 \\ = -2 \\ \end{bmatrix} = -2 \quad \begin{bmatrix} 2 \\ = 2 \\ \end{bmatrix} = 2$

Facts about Floor and Ceiling

- 1. $X-1 < |X| \leq X$
- 2. $X \leq \lceil X \rceil < X + 1$
- 3. $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$ if n is an integer

Properties of logs (of the mathematical kind)

- $\bullet\,$ Claim: A=2 $^{\log_2 A}$
- \bullet Proof: let x=log $_2$ A A = 2 $^{\mathsf{x}$ = 2 $^{\mathsf{log}_2\mathsf{A}}$

Therefore, ^a program with time complexity $O(2^{\log_2 n})$ is a linear program (and not exponential as it might seem in ^a first glance).

Properties of logs (of the mathematical kind)

- We will assume logs to base 2 unless specified otherwise
- log AB ⁼ log A ⁺ log B
	- \rightarrow A=2^{log₂A} and B=2^{log₂B}
	- › $AB = 2^{\log_2 A} \cdot 2^{\log_2 B} = 2^{\log_2 A + \log_2 B}$
	- \rightarrow so log $_2$ AB = log $_2$ A + log $_2$ B
	- › [note: log AB [≠] log A•log B]

Other log properties

- log A/B ⁼ log A log B
- log (A^B) = B log A
- $\bullet\,$ log log X $<$ log X $<$ X for all X $>$ 0
	- \rightarrow log log X = Y means 2^{2 γ} = X
		- \rightarrow log X grows slower than X
			- called a "sub-linear" function

9

A log is ^a log is ^a log

• Any base ^x log is equivalent to base 2 log within a constant factor

Arithmetic Series

•
$$
S(N) = 1 + 2 + ... + N = \sum_{i=1}^{N} i
$$

• The sum is $C(1)$ 1

$$
S(1) = 1
$$

∴ S(2) = 1+2 = 3

$$
\Rightarrow S(3) = 1 + 2 + 3 = 6
$$

$$
\bullet \left[\sum_{i=1}^N i = \frac{N(N+1)}{2} \right]
$$

 Why is this formula useful when you analyze algorithms?

Algorithm Analysis

• Consider the following program segment:

```
x:= 0;
for i = 1 to N do
  for j = 1 to i do
    x := x + 1;
```
• What is the value of ^x at the end?

Analyzing the Loop

- Total number of times ^x is incrementedis the number of "instructions" executed = $+2+3+...=\sum_{n=1}^{N}i=\frac{N(N+1)}{2}$ N $\frac{2}{1}$ 2 $1+2+3+...=\sum_{i=1}^{N} i = \frac{N(N+1)}{N}$
- You've just analyzed the program!
	- › Running time of the program is proportional to N(N+1)/2 for all N

```
\rightarrow O(N<sup>2</sup>)
```
13

Analyzing Mergesort

```
Mergesort(p : node pointer) : node pointer {
Case {
  p = null : return p: //no elementsp.next = null : return p; //one element
  elsed : duo pointer; // duo has two fields first,second
    d := Split(p);
    return Merge(Mergesort(d.first),Mergesort(d.second));
}
}
           T(n) is the time to sort n items.
```
 $\mathsf{T}(\mathsf{n})\leq \mathsf{T}(\left\lfloor \mathsf{n}/2 \right\rfloor) + \mathsf{T}(\left\lceil \mathsf{n}/2 \right\rceil) + \mathsf{d}\mathsf{n}$ $\mathsf{T}(0),\mathsf{T}(1)\!\leq\!{\sf c}$

Mergesort Analysis Upper Bound

= O(n logn) \leq cn + dn log $_2$ n $=$ nT(1) $+$ kdn if n $=$ 2 $\,$ \leq 2 $^{\rm k}$ T(n/2 $^{\rm k}$) + kdn = 8T(n/8) +3dn $\leq 4(2 \mathsf{T}(\mathsf{n}/8)$ + dn/4) + 2dn = 4T(n/4) + 2dn \leq 2(2T(n/4) $\,$ + dn/2) $\,$ + dn Assuming n is a power of 2 k ≤ 2T(n/2) + n = 2^k, k = log n

Recursion Used Badly

 $\bullet\,$ Classic example: Fibonacci numbers F_{n}

 $(0,1, 1, 2, 3, 5, 8, 13, 21, ...)$ \rightarrow F $_{\rm 0}$ = 0 , F $_{\rm 1}$ = 1 (Base Cases) › Rest are sum of preceding two Figure 1. **Figure 1. 19 Contract 1.** Leonardo Pisano

F_n = F_{n-1} + F_{n-2} (n > 1) Fibonacci (1170-1250) Recursive Procedure for Fibonacci Numbers

```
fib(n : integer): integer {
   Case {
      n < 0 : return 0;
      n = 1 : return 1;
      else : return fib(n-1) + fib(n-2);
      }
   }
```
- Easy to write: looks like the definition of F_{n}
- But, can you spot the big problem?

17

Recursive Calls of Fibonacci Procedure

• Re-computes fib(N-i) multiple times!

21

Iterative Algorithm for Fibonacci Numbers

```
fib
_
iter(n : integer): integer {
  fib0, fib1, fibresult, i : integer;
  fib0 := 0; fib1 := 1;
  case {
   n < 0 : fibresult := 0;
   n = 1 : fibresult := 1;
   else :
     for i = 2 to n do {
      fibresult := fib0 + fib1;
      fib0 := fib1;
      fib1 := fibresult;
       }
  }
  return fibresult;
\} 23
```
Fibonacci Analysis Lower Bound

 $T(n) \geq T(n-1) + T(n-2)$ $\mathsf{T}(0),\mathsf{T}(1)\,{\geq}\,1$ $T(n)$ is the time to compute fib (n) .

It can be shown by induction that T(n) $\geq \phi$ ⁿ⁻² where $\frac{12}{2}$ ≈1.62 $\frac{1+\sqrt{5}}{2} \approx$ $\phi = \frac{1+}{1}$

22

Recursion Summary

- Recursion may simplify programming, but beware of generating large numbers of calls
	- › Function calls can be expensive in terms of time and space
- Be sure to get the base case(s) correct!
- Each step must get you closer to the base case

Asymptotic Behavior

- The "asymptotic" performance as N \rightarrow $\infty,$ regardless of what happens for small input sizes N, is generally most important
- Performance for small input sizes may matter in practice, if you are <u>sure</u> that <u>small</u> N will be common forever
- We will compare algorithms based on how they scale for large values of N

Order Notation (one more time)

- Mainly used to express upper bounds on time of algorithms. "n" is the size of the input.
- $\bullet~$ T(n) = O(f(n)) if there are constants c and n_0 such that T(n) \leq c f(n) for all n \geq n $_{0}.$
	- \rightarrow 10000n + 10 $\,$ n log $_2$ n = O(n log n)
	- › .00001 ⁿ² [≠] O(n log n)
- Order notation ignores constant factors and low order terms.

Why Order Notation

- Program performance may vary by ^a constant factor depending on the compiler and the computer used.
- In asymptotic performance (n →∞) the low order terms are negligible.

Some Basic Time Bounds

- Logarithmic time is O(log n)
- Linear time is O(n)
- Quadratic time is $O(n^2)$
- $\bullet\,$ Cubic time is O(n $^3)$
- Polynomial time is $O(n^k)$ for some k.
- $\bullet\,$ Exponential time is O(cⁿ) for some c > 1.