Binary Heaps

CSE 373 Data Structures Unit 9

Reading: Sections 6.1-6.4

Revisiting FindMin

- Application: Find the smallest (or highest priority) item quickly
 - Operating system needs to schedule jobs according to priority instead of FIFO
 - Event simulation (bank customers arriving and departing, ordered according to when the event happened)
 - Find student with highest grade, employee with highest salary etc.

2

Priority Queue ADT

- Priority Queue can efficiently do:
 - › FindMin (and DeleteMin)
 - > Insert
- What if we use...
 - Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
 - Binary Search Trees: What is the run time for Insert and FindMin?

Less flexibility \rightarrow More speed

- Lists
 - > If sorted: FindMin is O(1) but Insert is O(N)
 - > If not sorted: Insert is O(1) but FindMin is O(N)
- Balanced Binary Search Trees (BSTs)
 - → Insert is O(log N) and FindMin is O(log N)
- BSTs look good but...
 - > BSTs are efficient for all Finds, not just FindMin
 - > We only need FindMin

Better than a speeding BST

- We can do better than Balanced Binary Search Trees.
 - Very limited requirements: Insert, FindMin, DeleteMin. The goals are:
 - FindMin is O(1)
 - Insert is O(log N)
 - DeleteMin is O(log N)

Binary Heaps (minimum)

- A binary heap is a binary tree (NOT a BST) that is:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - > Satisfies the heap order property:
 - · every node is less than or equal to its children
 - In particular, the root node is always the smallest node

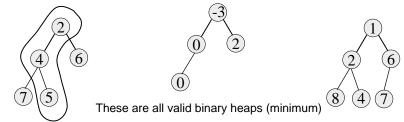
6

Binary Heaps (maximum)

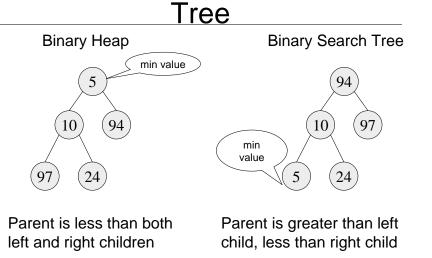
- A binary heap is a binary tree (NOT a BST) that is:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - > Satisfies the heap order property
 - every node is greater than or equal to its children
 - In particular, the root node is always the largest node

Heap order property

- A heap provides limited ordering information
- Each *path* is sorted, but the subtrees are not sorted relative to each other
 - › A binary heap is NOT a binary search tree



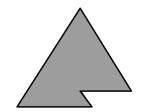
Binary Heap vs Binary Search



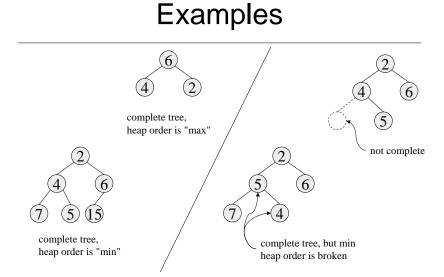
9

Structure property

- A binary heap is a complete tree
 - All nodes are in use except for possibly the right end of the bottom row

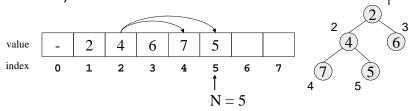


10



Array Implementation of Heaps

- Root node = A[1]
- Children of A[i] are in A[2i], A[2i + 1]
 - Proof: By induction on i
- Keep track of current size N (number of nodes)



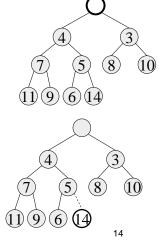
FindMin and DeleteMin

- FindMin: Easy!
 - > Return root value A[1]
 - > Run time = ?
- DeleteMin:
 - Delete (and return) value at root node
 - How can we delete?

Maintain the Structure

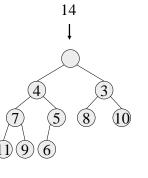
Property

- We now have a "Hole" at the root
 - Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete



Maintain the Heap Property

- The last value has lost its node
 - we need to find a new place for it
- We can do a simple insertion sort operation to find the correct place for it in the tree

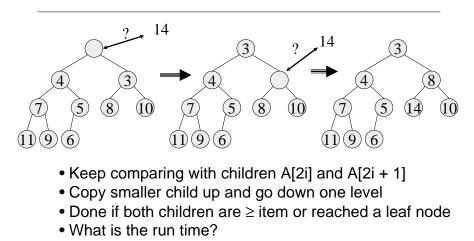


(9)

(6)(14)

13

DeleteMin: Percolate Down



Percolate Down

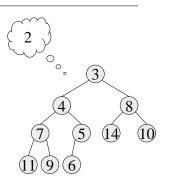
DeleteMin: Run Time Analysis

- Run time is O(depth of heap)
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 - \rightarrow depth = $\lfloor \log_2(N) \rfloor$
- Run time of DeleteMin is O(log N)

18

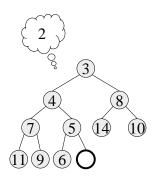
Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done



Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly

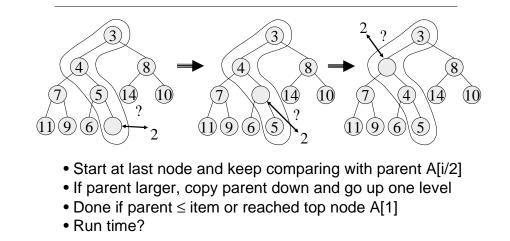


Maintain the Heap Property

4

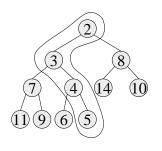
- First, the new value goes to A[N+1] (and N is increased)
- Next, we find the correct place for it in the tree (

Insert: Percolate Up



21

Insert: Done



[•] Run time?

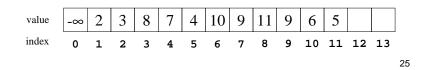
PercUp

- Define PercUp which percolates new entry to correct spot.
- Note: the parent of i is i/2

```
PercUp(i : integer, x : integer): {
????
}
```

Sentinel Values

- Every iteration of Insert needs to test:
 - if it has reached the top node A[1]
 -) if parent \leq item
- Can avoid first test if A[0] contains a very large negative value
 -) sentinel - ∞ < item, for all items
- Second test alone always stops at top

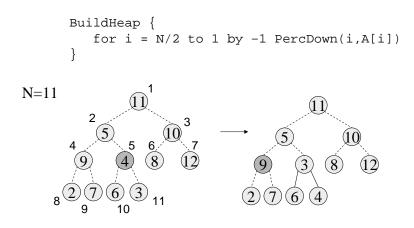


Binary Heap Analysis

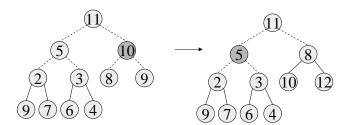
- Space needed for heap of at most MaxN nodes: O(MaxN)
 - An array of size MaxN, plus a variable to store the current size N, plus an array slot to hold the sentinel
- Time
 - FindMin: O(1)
 - > DeleteMin and Insert: O(log N)
 - > BuildHeap from N inputs : O(N)

26

Build Heap



Build Heap

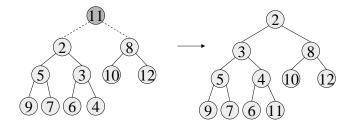


-00

(10)

(9

Build Heap



Analysis of Build Heap

- Assume $N = 2^{K} 1$ (a full tree of height k)
 - Level 1: k -1 steps for 1 item
 - > Level 2: k 2 steps for 2 items
 - > Level 3: k 3 steps for 4 items
 - > In general: Level i : k i steps for 2ⁱ⁻¹ items
 - > Until Level k-1: 1 step for 2k-2 items

Total Steps =
$$\sum_{i=1}^{k-1} (k-i) 2^{i-1} = 2^k - k - 1$$

= O(N)

30

Other Heap Operations

- Find(X, H): Find the element X in heap H of N elements
 - > What is the running time? O(N)
- FindMax(H): Find the maximum element in H
- Where FindMin is O(1)
 - > What is the running time? O(N)
- We sacrificed performance of these operations in order to get O(1) performance for FindMin
- How can we support FindMax in O(1)?
 - > Hint: double time and space complexity..

Other Heap Operations

- DecreaseKey(P,Δ): Decrease the key value of node at position P by a positive amount Δ, e.g., to increase priority
 - $\, \cdot \,$ First, subtract Δ from current value at P
 - > Heap order property may be violated
 - > so percolate up to fix
 - > Running Time: O(log N)

Other Heap Operations

- IncreaseKey(P,Δ): Increase the key value of node at position P by a positive amount Δ, e.g., to decrease priority
 - $\, \cdot \,$ First, add Δ to current value at P
 - > Heap order property may be violated
 - > so percolate down to fix
 - Running Time: O(log N)

Other Heap Operations

- Delete(P): E.g. Delete a job waiting in queue that has been preemptively terminated by user
 - > Use DecreaseKey(P,∞) followed by DeleteMin
 - > Running Time: O(log N)

34

Other Heap Operations

- Merge(H1,H2): Merge two heaps H1 and H2 of size O(N). H1 and H2 are stored in two arrays.
 - Can do O(N) Insert operations: O(N log N) time
 - Better: Copy H2 at the end of H1 and use BuildHeap. Running Time: O(N)

PercUp Solution