
AVL Trees

CSE 373
Data Structures

Unit 7

Reading: Section 4.4

2

Binary Search Tree - Best
Time

• All BST operations are O(d), where d is
tree depth

• minimum d is for a binary tree
with N nodes
› What is the best case tree?
› What is the worst case tree?

• So, best case running time of BST
operations is O(log N)

� �Nlogd 2=

3

Binary Search Tree - Worst
Time

• Worst case running time is O(N)
› What happens when you Insert elements in

ascending order?
• Insert: 2, 4, 6, 8, 10, 12 into an empty BST

› Problem: Lack of “balance”:
• compare depths of left and right subtree

› Unbalanced degenerate tree

4

Balanced and unbalanced BST

4

2 5

1 3

1

5

2

4

3

7

6

4

2 6

5 71 3

Is this “balanced”?

5

Approaches to balancing trees

• Don't balance
› May end up with some nodes very deep

• Strict balance
› The tree must always be balanced perfectly

• Pretty good balance
› Only allow a little out of balance

• Adjust on access
› Self-adjusting

6

Balancing Binary Search
Trees

• Many algorithms exist for keeping
binary search trees balanced
› Adelson-Velskii and Landis (AVL) trees

(height-balanced trees)

› Splay trees and other self-adjusting trees
› B-trees and other multiway search trees

7

Perfect Balance
• Want a complete tree after every operation

› tree is full except possibly in the lower right

• This is expensive
› For example, insert 2 in the tree on the left and

then rebuild as a complete tree

Insert 2 &
complete tree

6

4 9

81 5

5

2 8

6 91 4
8

AVL - Good but not Perfect
Balance

• AVL trees are height-balanced binary
search trees

• Balance factor of a node
› height(left subtree) - height(right subtree)

• An AVL tree has balance factor
calculated at every node
› For every node, heights of left and right

subtree can differ by no more than 1: For
every node t h(t.left)-h(t.right) ∈ {-1, 0, 1}

› Store current heights in each node

9

Height of an AVL Tree

• N(h) = minimum number of nodes in an
AVL tree of height h.

• Basis
› N(0) = 1, N(1) = 2

• Induction
› N(h) = N(h-1) + N(h-2) + 1

• Solution (recall Fibonacci analysis)

› N(h) > φh (φ ≈ 1.62) h-1
h-2

h

10

Height of an AVL Tree

• N(h) > φh (φ ≈ 1.62)
• Suppose we have n nodes in an AVL

tree of height h.
› n > N(h) (because N(h) was the minimum)

› n > φh hence logφ n > h (relatively well
balanced tree!!)

› h < 1.44 log2n (i.e., Find takes O(logn))

11

Node Heights

1

00

2

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright

empty height = -1

0

0

2

0

6

4 9

1 5

1

Tree A (AVL) Tree B (AVL)

12

Node Heights after Insert 7

2

10

3

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright

empty height = -1

1

0

2

0

6

4 9

1 5

1

0

8

0

7

balance factor
1-(-1) = 2

-1

Tree B (AVL) Tree C (not AVL)

13

Insert and Rotation in AVL
Trees

• Insert operation may cause balance factor
to become 2 or –2 for some node
› only nodes on the path from insertion point to

root node have possibly changed in height
› So after the Insert, go back up to the root

node by node, updating heights
› If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation around
the node

14

Single Rotation in an AVL
Tree

2

10

2

0

6

4 9

81 5

1

0

7

0

1

0

2

0

6

4

9

8

1 5

1

0

7

15

Let the node that needs rebalancing be α.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

The rebalancing is performed through four
separate rotation algorithms.

Insertions in AVL Trees

16

j

k

X Y

Z

Consider a valid
AVL subtree

AVL Insertion: Outside Case

h

h
h

h+1

h+2

17

j

k

X
Y

Z

Inserting into X
destroys the AVL
property at node j

(h+2) - h

AVL Insertion: Outside Case

h

h+1 h

Becomes
h + 2

18

j

k

X
Y

Z

Do a “right rotation”

AVL Insertion: Outside Case

h

h+1 h

19

j

k

X
Y

Z

Do a “right rotation”

Single right rotation

h

h+1 h

20

j

k

X Y Z

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!

h

h+1

h

21

j

k

X Y

Z

Consider a valid
AVL subtree

AVL Insertion: Inside Case

h

h
h

h+1

h+2

22

Inserting into Y
destroys the
AVL property
at node j

j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

Becomes
h + 2

Does “right rotation”
restore balance?

23

j
k

X

Y
Z

“Right rotation”
does not restore
balance… now k is
out of balance

AVL Insertion: Inside Case

h
h+1

h

24

Consider the structure
of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

25

j

k

X
V

Z

W

i

Y = node i and
subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1

h+2

26

j

k

X
V

Z

W

i

AVL Insertion: Inside Case

We will do a left-right
“double rotation” . . .

27

j

k

X V

Z
W

i

Double rotation : first rotation

left rotation complete

28

j

k

X V

Z
W

i

Double rotation : second
rotation

Now do a right rotation

29

jk

X V ZW

i

Double rotation : second
rotation

double rotation complete

Balance has been
restored

hh h or h-1

h+1
h+1

h+2

30

Implementation

hight

key

rightleft

Another possible implementation: do not keep the height; just the
difference in height, i.e. the balance factor (1,0,-1).

In both implementation, this has to be modified on the path of
insertion even if you don’t perform rotations

Once you have performed a rotation (single or double) you won’t
need to go back up the tree

31

Single Rotation

RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p

}

X

Y Z

n

We also need to
modify the heights
or balance factors
of n and p

Insert

p

32

Double Rotation

• Implement Double Rotation in two lines.

DoubleRotateFromRight(n : reference node pointer) {
????
}

X

n

V W

Z

33

Insertion in AVL Trees

• Insert at the leaf (as for all BST)
› only nodes on the path from insertion point to

root node have possibly changed in height
› So after the Insert, go back up to the root

node by node, updating heights

› If a new balance factor (the difference hleft-
hright) is 2 or –2, adjust tree by rotation around
the node

34

Insert in BST

Insert(T : reference tree pointer, x : element) : integer {
if T = null then

T := new tree; T.data := x; return 1;//the links to
//children are null

case
T.data = x : return 0; //Duplicate do nothing
T.data > x : return Insert(T.left, x);
T.data < x : return Insert(T.right, x);

endcase
}

35

Insert in AVL trees

Insert(T : reference tree pointer, x : element) : integer{
if T = null then

T := new tree; T.data := x; T.height=0; return 1;
else { case

T.data = x : return 0; //Duplicate do nothing
T.data > x : return Insert(T.left, x);

if ((height(T.left)- height(T.right)) = 2){
if (T.left.data > x) then //outside case

T = RotatefromLeft (T);
else //inside case

T = DoubleRotatefromLeft (T);}
T.data < x : return Insert(T.right, x);

code similar to the left case
Endcase }

T.height := max(height(T.left),height(T.right)) +1;
return 1;

}

36

Example of Insertions in an
AVL Tree

1

0

2

20

10 30

25

0

35

0

Insert 5, 40

37

Example of Insertions in an
AVL Tree

1

0

2

20

10 30

25

1

35

0

5
0

20

10 30

25

1

355

40

0

0

0
1

2

3

Now Insert 45

38

Single rotation (outside case)

2

0

3

20

10 30

25

1

35

2

5
0

20

10 30

25

1

405

40

0

0

0

1

2

3

45

Imbalance
35 45

0 0

1

Now Insert 34

39

Double rotation (inside case)

3

0

3

20

10 30

25

1

40

2

5
0

20

10 35

30

1

405

45

0 1

2

3

Imbalance

45

0

1

Insertion of 34

35

34

0

0

1 25 340

40

AVL Tree Deletion

• Similar but more complex than insertion
› Rotations and double rotations needed to

rebalance
› Imbalance may propagate upward so that

many rotations may be needed.

41

Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the

speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use

other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run time for

many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees

42

Double Rotation Solution

DoubleRotateFromRight(n : reference node pointer) {
RotateFromLeft(n.right);
RotateFromRight(n);

}

X

n

V W

Z

