AVL Trees

CSE 373
Data Structures
Unit 7

Reading: Section 4.4

Binary Search Tree - Worst Time

- Worst case running time is O(N)
 - What happens when you Insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - > Problem: Lack of "balance":
 - compare depths of left and right subtree
 - Unbalanced degenerate tree

Binary Search Tree - Best Time

- All BST operations are O(d), where d is tree depth
- minimum d is d = [log₂N] for a binary tree with N nodes
 - > What is the best case tree?
 - What is the worst case tree?
- So, best case running time of BST operations is O(log N)

2

Balanced and unbalanced BST

Approaches to balancing trees

- Don't balance
 - May end up with some nodes very deep
- Strict balance
 - > The tree must always be balanced perfectly
- · Pretty good balance
 - > Only allow a little out of balance
- Adjust on access
 - > Self-adjusting

5

Perfect Balance

- Want a complete tree after every operation
 - > tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - > Splay trees and other self-adjusting trees
 - > B-trees and other multiway search trees

6

AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
 - > height(left subtree) height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1: For every node t h(t.left)-h(t.right) ∈ {-1, 0, 1}
 - Store current heights in each node

Height of an AVL Tree

- N(h) = minimum number of nodes in an AVL tree of height h.
- Basis

$$\rightarrow$$
 N(0) = 1, N(1) = 2

Induction

$$\rightarrow$$
 N(h) = N(h-1) + N(h-2) + 1

• Solution (recall Fibonacci analysis)

$$\rightarrow$$
 N(h) \geq ϕ^h ($\phi \approx 1.62$)

6

Height of an AVL Tree

- $N(h) \ge \phi^h \quad (\phi \approx 1.62)$
- Suppose we have n nodes in an AVL tree of height h.
 - $\rightarrow n \ge N(h)$ (because N(h) was the minimum)
 - $n \ge \phi^h$ hence $\log_{\phi} n \ge h$ (relatively well balanced tree!!)
 - \rightarrow h \leq 1.44 log₂n (i.e., Find takes O(logn))

10

Node Heights

height of node = h balance factor = h_{left}-h_{right} empty height = -1

Node Heights after Insert 7

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left}h_{right}) is 2 or -2, adjust tree by *rotation* around the node

13

Single Rotation in an AVL Tree

14

Insertions in AVL Trees

Let the node that needs rebalancing be α .

There are 4 cases:

Outside Cases (require single rotation):

- 1. Insertion into left subtree of left child of α .
- 2. Insertion into right subtree of right child of α .

Inside Cases (require double rotation):

- 3. Insertion into right subtree of left child of α .
- 4. Insertion into left subtree of right child of α .

The rebalancing is performed through four separate rotation algorithms.

AVL Insertion: Outside Case

AVL Insertion: Outside Case

AVL Insertion: Outside Case

Single right rotation

Outside Case Completed

AVL property has been restored!

AVL Insertion: Inside Case

AVL Insertion: Inside Case

21

AVL Insertion: Inside Case

AVL Insertion: Inside Case

22

AVL Insertion: Inside Case

AVL Insertion: Inside Case

Double rotation: first rotation

Double rotation : second rotation

Double rotation: second rotation

double rotation complete

Implementation

Another possible implementation: do not keep the height; just the difference in height, i.e. the balance factor (1,0,-1).

In both implementation, this has to be modified on the path of insertion even if you don't perform rotations

Once you have performed a rotation (single or double) you won't need to go back up the tree

30

Single Rotation

```
RotateFromRight(n : reference node pointer) {
   p : node pointer;
   p := n.right;
   n.right := p.left;
   p.left := n;
   n := p
 We also need to
 modify the heights
                                                   <u>Insert</u>
 or balance factors
 of n and p
```

Double Rotation

Implement Double Rotation in two lines.

```
DoubleRotateFromRight(n : reference node pointer) {
????
                                                 32
```

Insertion in AVL Trees

- Insert at the leaf (as for all BST)
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left}h_{right}) is 2 or -2, adjust tree by *rotation* around the node

33

Insert in AVL trees

Insert in BST

Example of Insertions in an AVL Tree

34

Example of Insertions in an AVL Tree

37

Single rotation (outside case)

Double rotation (inside case)

AVL Tree Deletion

- Similar but more complex than insertion
 - Rotations and double rotations needed to rebalance
 - Imbalance may propagate upward so that many rotations may be needed.

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. Search is O(log N) since AVL trees are always balanced.
- 2. Insertion and deletions are also O(logn)
- 3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

- 1. Difficult to program & debug; more space for balance factor.
- 2. Asymptotically faster but rebalancing costs time.
- 3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
- 4. May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

Double Rotation Solution

```
DoubleRotateFromRight(n : reference node pointer) {
   RotateFromLeft(n.right);
   RotateFromRight(n);
}
```

42