AVL Trees

CSE 373 Data Structures Unit 7

Reading: Section 4.4

Binary Search Tree - Best Time

- All BST operations are O(d), where d is tree depth
- $\bullet \,$ minimum d is d $= \bigsqcup \log_2\!\!{\mathsf N}\bigsqcup$ for a binary tree with N nodes
	- › What is the best case tree?
	- › What is the worst case tree?
- So, best case running time of BST operations is O(log N)

Binary Search Tree - Worst Time

- Worst case running time is O(N)
	- › What happens when you Insert elements in ascending order?
		- Insert: 2, 4, 6, 8, 10, 12 into an empty BST
	- › Problem: Lack of "balance":
		- compare depths of left and right subtree
	- › Unbalanced degenerate tree

Balanced and unbalanced BST

Approaches to balancing trees

- Don't balance
	- › May end up with some nodes very deep
- Strict balance
	- › The tree must always be balanced perfectly
- Pretty good balance
	- › Only allow ^a little out of balance
- Adjust on access
	- › Self-adjusting

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
	- › Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
	- \rightarrow Splay trees and other self-adjusting trees
	- › B-trees and other multiway search trees

Perfect Balance

5

- Want a complete tree after every operation \rightarrow tree is full except possibly in the lower right
- This is expensive
	- \rightarrow For example, insert 2 in the tree on the left and then rebuild as ^a complete tree

AVL - Good but not Perfect **Balance**

- AVL trees are height-balanced binary search trees
- Balance factor of a node \rightarrow height(left subtree) - height(right subtree)
- An AVL tree has balance factor calculated at every node
	- \rightarrow For every node, heights of left and right subtree can differ by no more than 1: For every node t h(t.left)-h(t.right) \in {-1, 0, 1}
	- › Store current heights in each node

Height of an AVL Tree

- N(h) ⁼ minimum number of nodes in an AVL tree of height h.
- Basis
	- \rightarrow N(0) = 1, N(1) = 2
- Induction
	- › N(h) ⁼ N(h-1) ⁺ N(h-2) ⁺ 1
- Solution (recall Fibonacci analysis) \rightarrow N(h) $\geq \phi^{\text{h}}$ ($\phi \approx 1.62$) h-1 h-2

9

- Height of an AVL Tree
- N(h) $\geq \phi^{\text{h}}$ ($\phi \approx 1.62$)
- Suppose we have ⁿ nodes in an AVL tree of height h.
	- \rightarrow n \geq N(h) (because N(h) was the minimum)
	- › n <u>></u> φʰ hence log_φ n <u>></u> h (relatively well balanced tree!!)
	- \rightarrow h \leq 1.44 log $_2$ n (i.e., Find takes O(logn))

10

Node Heights

height of node $= h$ balance factor = h_{left}-h_{right} $empty$ height = -1

Node Heights after Insert 7

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
	- \rightarrow only nodes on the path from insertion point to root node have possibly changed in height
	- › So after the Insert, go back up to the root node by node, updating heights
	- [>] If a new balance factor (the difference h_{left} h_{riath}) is 2 or –2, adjust tree by rotation around the node

14

Insertions in AVL Trees

Let the node that needs rebalancing be α .

There are 4 cases:

Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of α .

2. Insertion into right subtree of right child of α . Inside Cases (require double rotation) :

3. Insertion into right subtree of left child of α .

4. Insertion into left subtree of right child of α .

The rebalancing is performed through four separate rotation algorithms.

AVL Insertion: Outside Case

AVL Insertion: Outside Case

Single right rotation

Outside Case Completed

AVL property has been restored!

AVL Insertion: Inside Case

AVL Insertion: Inside Case

AVL Insertion: Inside Case

Double rotation : first rotation

Double rotation : second rotation

Implementation

Another possible implementation: do not keep the height; just the difference in height, i.e. the balance factor (1,0,-1).

In both implementation, this has to be modified on the path of insertion even if you don't perform rotations

Once you have performed ^a rotation (single or double) you won't need to go back up the tree

30

Single Rotation

Double Rotation

• Implement Double Rotation in two lines.

DoubleRotateFromRight(n : reference node pointer) { ???? } n

Insertion in AVL Trees

- Insert at the leaf (as for all BST)
	- \rightarrow only nodes on the path from insertion point to root node have possibly changed in height
	- \rightarrow So after the Insert, go back up to the root node by node, updating heights
	- [>] If a new balance factor (the difference h_{left} h_{riath}) is 2 or –2, adjust tree by rotation around the node

Insert in BST

```
Insert(T : reference tree pointer, x : element) : integer {
if T = null then
  T := new tree; T.data := x; return 1;//the links to
                                        //children are null
caseT.data = x : return 0; //Duplicate do nothing
  T.data > x : return Insert(T.left, x);
  T.data < x : return Insert(T.right, x);
endcase}
```
33

Insert in AVL trees

```
Insert(T : reference tree pointer, x : element) : integer{
if T = null then
  T := new tree; T.data := x; T.height=0; return 1;
else { case
  T.data = x : return 0; //Duplicate do nothing
  T.data > x : return Insert(T.left, x);
                if ((height(T.left)- height(T.right)) = 2){
                   if (T.left.data > x ) then //outside case
                          T = RotatefromLeft (T);
                  else //inside case
                          T = DoubleRotateromLeft (T);T.data < x : return Insert(T.right, x);
                code similar to the left case
Endcase }
 T.height := max(height(T.left),height(T.right)) +1;
  return 1;
}
```
Example of Insertions in an AVL Tree

Double rotation (inside case)

AVL Tree Deletion

- Similar but more complex than insertion
	- › Rotations and double rotations needed to rebalance
	- › Imbalance may propagate upward so that many rotations may be needed.

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. Search is O(log N) since AVL trees are always balanced.
- 2. Insertion and deletions are also O(logn)
- 3. The height balancing adds no more than ^a constant factor to the speed of insertion.

Arguments against using AVL trees:

- 1. Difficult to program & debug; more space for balance factor.
- 2. Asymptotically faster but rebalancing costs time.
- 3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
- 4. May be OK to have O(N) for ^a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

41

Double Rotation Solution

DoubleRotateFromRight(n : reference node pointer) { RotateFromLeft(n.right); RotateFromRight(n); } XnZ

> VV\ /W