CSE373 — Data Structures and Algorithms
Autumn 2003
Wet assignment #1

Duedates.
Team formation: by 5pm on Thursday, Oct 16, 2003
Full assignment: by classtime on Friday, Oct 24, 2003 (el ectronic)
in class on Friday, Oct 24, 2003 (on paper; see instructions)

General.
Be sure to read this entire document as soon as possible, since this may affect how you approach
the problem!

Logistics.
For this wet (programming) assignment, you need to work in a team with one other person in the
class. Itisup to you to decide who that person will be.

We require that one of the two students in each team email both TAs (and CC their teammate) by
5pm on Thursday, Oct 16 letting us know the following:

(a) who the team members will be — names and email addresses for both; and

(b) what implementation language (Java or C++) both of you are going to be using.
Note: If you fail to notify us on time, we will deduct 10% of your score on this assignment.

Problem area description.

The problem area for this assignment will be sparse matrices.

Let A n be amatrix of m x n integer elements organized in m rows and n columns. If many of
the matrix elements are 0, we call the matrix sparse.

To store a sparse matrix in memory, one can do better than storing all the e ements (since many of
them are aready known to be 0). Thus, the required space reduces from m x n (for a general
matrix) to n + m+ ka (Where ka is the actual number of non-zero elementsin the sparse matrix A).
For such efficient storage one can use a data structure based on linked lists. Figure 1 illustrates
this.

P R R

Figure 1. A 5 x 5 sparse matrix represented with linked lists.

The element in cell (2, 1) isthe first non-zero element on row 2. It is pointed to by the header
element for that row. The next non-zero element on row 2 isin cell (2, 4) , to which thereisa
pointer fromcell (2, 1) . Thedementincell (2, 4) isaso thefirst non-zero element in column
4. 1t is pointed to by the header element for that column. Finally, row 1 and column O have no
non-zero elements.

What you need to do.
For this assgnment you need to implement a class for handling sparse matrices using the
suggested linked list-based data structure.
A list element definition may look like this (in pseudo-code):
t ypedef struct node {

r ow. i nt eger;

colum: integer;

val ue: integer;

next : node poi nter;

down: node poi nter;
} NODE;

1. Implementation. Specifically, we want to have the following operations:

1) read(A, f) —readsin a sparse matrix A from file f and creates, initiaizes, and fillsin
the above data structure with the elements of matrix A.

This operation needs to have time complexity O(n+ntKka), not O(m*n).
The format of the input file f is described in the next section.

2) mul t (A c) —multipliesthe elements of a sparse matrix A by aconstant c.

This operation needs to have time complexity O(1), not O(n*n), and not even O(Ka).
Think about what this requires from the class representing a sparse matrix. You need to
discuss thisin your submission.

3) add(A, B) — adds two sparse matrices A and B of the same size m x n, and stores the
result in matrix A.

This operation needs to have time complexity O(n+n+ka+kg), not O(m* n).

4) mul t (A B, C) — multiplies two sparse matrices A and B of sizesm x nand n x p,
respectively, and stores the result in matrix C of sizem x p. As part of this operation your
code will need to first create and initialize the new matrix C. (Hint: You may find it
helpful to implement a separate hel per operation for that.)

The multiplication needs to have as good a time complexity as you can manage. You
need to discuss what you did and present a formal argument of the complexity in your
submission. It may help to talk about alternatives and why you chose what you chose.

5 wite(A f) —writesasparse matrix A out to filef, following the same format asin the
input file (see the next section). (Hint: You need to make it possible to read in afile that
was previously written to.)

This operation, similarly tor ead(A, f) , needs to have time complexity O(n+ntKka), not
O(m*n).

Hint: You may find it useful to implement other helper routines in your sparse matrix class,

eg., create(A mn),get NunRows(A), get NumCol umms(A), etc.

2. Testing. To test your sparse matrix implementation, you will need to write a ssimple test
module (program) that uses all of the above operations to perform computations on matrices
whose data come from the provided (and maybe a so from your own) test case files.

3. Special cases. Think about how you would deal with specia cases, like a sparse matrix with
some or al of its elements becoming O as a result of an operation. Does that affect, and if so —
how, the way you store the matrix, or the time and space complexities of any further operations
on such amatrix? Be sure to discuss these questions in your submission.

Test cases.
We will provide test case files having the following format:

- Rows starting with the pound sign (#) contain comments and should be disregarded by your
program.

- The first row that does not start with a pound sign defines the size of the matrix (number of
rows and columns) as well as the number of non-zero elementsinit. For example,

m= 3 n =10 numtens = 18
means that the matrix has 3 rows, 10 columns and 18 non-zero elements (of the 30 total
elements).
An exception to thisis when there is a scaling (constant) factor like in the operation
mul t (A, ¢). Then thetest casefilewill indicate the value of that constant factor, so the
corresponding row will look, for example, like this:

m= 3 n =10 numtens = 18 const = 376

- Each row after thisfirst defining row contains information about exactly 1 non-zero element
—the row and column coordinates of the cell whereiit is stored, and its value. For example,

2,8 = 5708
means that the element in row 2 and column 8 hasvalue 5708.

- The elementsin the test files are ordered by column first, and then by row. That is, el ement
(4, 1) would precede element (2, 3) (since column 1 comes before column 3), which
itself would precede element (5, 3) (since both have the same column 3 but row 2
precedes row 5). Look at the test case files for more examples.

The test case files will be available shortly at:
http://www.cs.washington.edu/education/courses/cse373/03au/ass gnments/wet1-tests/

Development environment.

As an implementation language you are allowed to use either Java or C++. Be sure to avoid
using features that are specific to a particular version of a compiler, since if you do so we likely
will be unable to compile your code and you will lose points.

A description of the UW facilities you can use for this and future wet assignments can be found
on the course web page under “ Assignments’.

Submission.
The submission is electronic and part of it is also paper-based, as specified below.
We need only one el ectronic submission and only one printed submission per team.

What to submit. All of the following (1-5) need to be submitted electronically by class time on
the due date:

1) Your code — the sparse matrix class Spar seMat ri x. j ava or Spar seMatri x. cpp
(depending on which language you use) with the code for al of the implemented
operations. Also include any supporting headers, packages, and the test module(s) you
wrote.

2) A description of all modules your code consists of (including module names and a one-
paragraph description of what each module does), and clear instructions on how to
compile and run your code, as well as how to test it on different test case files (we might

create). Put thisinaplaintextfile calleddescri ption. t xt.

3) Your brief argument about what the time and space complexities are for each operation.
Put thisin aplain text file, called conpl exi ti es. t xt.

4) A brief description of which test cases (from those we provided) you have tested your
code on; name them explicitly. Did al of your tests give results as expected (as in the test
results we provided)? Did you encounter any unusual (specia) cases and if so how did
you deal with them? How would you deal with the special case of a matrix of all zeros —
what is a good way to store it and does that affect time and space complexities of future
operations on such a matrix? Put this description in a plain text file, called
testing. txt.

5) A brief description of who (of the two partners in the team) did what part of the
assignment: the different parts of the code, the testing, the complexity arguments, and
anything else you did. Be sure to include your names and emails here. You are
encouraged to work on all parts together, and if so, indicate that thisisindeed the case. If,
however, you decided to split the work, we also need to know that, as well as how you did
it. Put thisdescriptionin aplaintextfile calledcontri butions.txt.

In addition, print and bring to class on the due date:

1) The code of the SparseMatrix class only. (Please, do not print header files, packages, or test
modules/classes!)

2) The description text files 2-5 (described above). To save paper and trees, please merge
them together into one file and then print.

Do not forget to write the names of both partners on the printed sheet you submit.

Printing guidelines. Double-sided printing and condensed code printing (i.e., double-sided at 2
pages of code per side) is highly encouraged! Modern printers, including many of those available
at UW facilities, can do that. Ask the lab person for assistance if you are unsure how to do that.

Where to submit. Instructions on where to electronically submit your assignment will appear on
the course web page and will be announced on the mailing list.

Quality criteria.
For full credit, you need to meet the following quality criteria:
1) Your submission needs to contain all parts described in the previous section.
2) Your code needs to:
- Compile and run without errors or warnings. (We will follow the instructions you will
have provided us with, so those need to be accurate.)
- Give the same results on the test cases as the test results provided by us (unless you
found an error in our test results).
- Contain comments, making it easier for a human to understand what you have done.
3) Your argumentation about the time and space complexities of al operations needs to be
sound. Brevity is encouraged but not at the expense of clarity or soundness.
4) Your printed materials need to look professiona (i.e., be printed and stapled together
rather than hand-written and loose).

Our advice.
Be sure to start early, as thisfirst programming assignment may prove more challenging that you
expect.

Good luck!

