CSE 373 – Data Structures and Algorithms Autumn 2003 Dry assignment #5. Due date: 12/05/03

1. (26 points)

1.a A *directed* graph is given by the following adjacency matrix, M, in which M(i,j)=1 if and only if there is an edge from i to j. Find a topological sort of the graph.

	А	В	С	D	E	F
Α	0	1	0	0	0	0
В	0	0	1	0	0	0
С	0	0	0	1	0	0
D	0	0	0	0	0	0
Е	0	1	1	0	0	0
F	1	0	1	0	0	0

1.b A weighted undirected graph G=(V,E) is given by the following adjacency matrix, M, in which M=(j,i)=M(i,j)=c(i,j). Use Dijkstra's algorithm to find the length of the shortest paths from S to any other vertex in G. For each vertex v, describe $\lambda(v)$ in any stage of the algorithm. Remark: $M(i,j)=\infty$ means that $(i,j)\notin E$.

	S	А	В	C	D	E
S	~	3	1	8	8	8
Α	3	8	8	2	6	8
В	1	8	8	5	~	2
С	8	2	5	8	8	4
D	8	6	8	~	~	4
E	~	~	2	4	4	~

2. (26 points) Let G=(V, E) be an undirected graph with weights on the edges. Let $s,t \in V$, $e \in E$. Give efficient algorithms for each of the following problems:

- a. Does *e* belong to *all* shortest paths connecting *s* and *t*?
- b. Does *e* belong to *some* shortest path connecting *s* and *t*?

Explain why your algorithms are correct and analyze their time complexity.

The more efficient your algorithms are, the more points you are going to receive.

3. (*24 points*) Consider each of the statements below independently of each other. If it is true, justify it; if it is false, give a counter example.

- **3.1.** Suppose that E' is a subset of the edges of a graph G_1 such that there is a minimum spanning tree of G_1 that contains all edges in E'. Let e be the minimum weight edge in the graph such that e is not contained in E'. Then $E' \cup \{e\}$ is contained in some minimum spanning tree of G_1 .
- **3.2.** Let (u,v) be the minimum weight edge in a graph G_2 . Then (u,v) belongs to some minimum spanning tree of G_2 .
- **3.3.** In a graph $G_3=(V, E)$, if the shortest distance between vertices A and B is a single edge that connects them, this edge is guaranteed to be in some minimum spanning tree of G_3 .

4. (24 points) How can we use the Bellman-Ford algorithm to detect in O(|E|*|V|) steps if a given directed graph contains a negative cycle? Explain.