
CSE 373 – Data Structures and Algorithms
Autumn 2003

Dry assignment #2
Due date: 10/17/03 (see submission instructions on the course web

page).

1. A ‘ frame matrix’ is an N*N matrix in which all the values along the same frame
are identical. For example, the matrix below is a 5*5 frame matrix.

 Suggest a data structure for storing a frame matrix, whose space complexity is O(N)
(for an N*N frame matrix with N2 elements). Using your suggested data structure,
implement (write in pseudo-code) the following operations; each should have time
complexity O(1):

get(i,j) returns the value of the element whose location is (i,j).

put(i,j,x) – set the value x at location (i,j) AND in all the locations in the frame to
which (i,j) belongs, in a way that the resulting matrix is still a frame matrix.

2. A store owner wants to keep some data about his customers. There are at most N
customers, each having a unique id in { 1, 2,… , N} . Suggest a data structure that supports
the following operations:

init(N) – initializes the number of potential customers to N; no purchases are done yet
by any customer.

purchase(i,x) – the customer having id i purchases goods of total value x. If this is the
first time that i purchases anything, then i joins the customer’s club.

sum(i) - returns the total value of goods purchased by customer i so far;

client(k) – returns the id of the k-th customer to join the customer’s club (or 0, if no
customers have joined yet or if k is larger than the number of customers in the club).

7 7 7 7 7
7 14 14 14 7
7 14 -9 14 7
7 14 14 14 7
7 7 7 7 7

For example, after performing init(20), purchase(1,1200), purchase(7,100),
purchase(7,300), and purchase(5,300), client(2) should return 7; client(3)
should return 5; sum(7) should return 400; sum(2) should return 0; and client(6)
should return 0.

The operations purchase(), sum(), and client() should have time complexity O(1).
The init() operation is allowed to have time complexity O(N). The space complexity of
your data structure should be O(N).

No need to write pseudo-code, only explain clearly in writing your data structure and the
way the operations are performed.

3. t is a linked list. What is the result of executing rec_func(t) (defined below)? What
is its time and space complexity?

rec_func1(t node_pointer, r node_pointer): node_pointer
{
 tail node_pointer;
 if (t = NULL) return r;
 tail := t.next;
 t.next := r;
 return rec_func1(tail, t);
}

rec_func(t node_pointer): node_pointer
{

return rec_func1(t, NULL);
}

4. An adaptive linked list is a regular linked list, with a header, in which whenever we
insert a new element or access (via find) an existing element, it is moved to the first
position in the list (after the header). The order of the other elements remains unchanged.

a. For the linked list below, draw the resulting list after the following operations are
performed: find(3), insert(6), delete(2), find(4).

header - > 1 - > 2 - > 3 - > 4 - > 5

b. Implement (write pseudo-code) the operations insert(x), find(x), and
delete(x) in an adaptive linked list.

c. Assume that an adaptive linked list includes a popular element, z, such that on
average ¼ of the find operations are find(z). In other words, out of any k find
operations ¼ k are find(z) and ¾ k are find() of other elements.

Given that the list has N elements and that k=�(N) find operations were performed,
prove that the average time of find(z) is O(1).

