
NP

CSE 373 - Data Structures
June 5, 2002

5-June-02 CSE 373 - Data Structures - 25 - NP 2

Readings and References

• Reading
› Section 9.7, Data Structures and Algorithm Analysis in C, Weiss

• Other References
› Chapter 34, “NP-Completeness”, Introduction to Algorithms,

Cormen, Leiserson, Rivest, Stein

› “More than any time in history mankind faces a crossroads. One
path leads to despair and utter hopelessness, the other to total
extinction. Let us pray that we have the wisdom to choose
correctly.” Woody Allen

With permission, many of the slides in this lecture are based on slides by Anna Karlin.

5-June-02 CSE 373 - Data Structures - 25 - NP 3

Finding Hamiltonian Circuits

• Does G contain a Hamiltonian circuit?
› No known easy algorithm for checking this…

• Try this
› Search through all paths to find one that visits each

vertex exactly once
› Can use your favorite graph search algorithm (DFS!)

to find various paths
› This is an exhaustive search (“brute force”) algorithm

5-June-02 CSE 373 - Data Structures - 25 - NP 4

Polynomial vs Exponential Time
• Most of our algorithms have been O(log N), O(N), O(N

log N) or O(N2) running time for inputs of size N
› These are all polynomial time algorithms
› Their running time is O(Nk) for some k > 0

• Exponential time BN is asymptotically worse than any
polynomial function Nk for any k
› For any k, Nk is o(BN) for any constant B > 1

• Polynomial time algorithms are “fast” algorithms
• Exponential time algorithms are “not fast”

› superpolynomial or “dog slow”

5-June-02 CSE 373 - Data Structures - 25 - NP 5

The complexity class P
• The set P is defined as the set of all problems

that can be solved in polynomial worse case
time
› this is the polynomial time complexity class
› contains problems whose time complexity to

solve is O(Nk) for some k
• Examples of problems in P

› searching, sorting, topological sort, single-source
shortest path, Euler circuit, etc.

5-June-02 CSE 373 - Data Structures - 25 - NP 6

The complexity class NP
• The set NP is the set of all problems for

which a given candidate solution can be
checked in polynomial time

• Example of a problem in NP:
› Hamiltonian circuit problem
› Given a candidate path, can test in linear time if

it is a Hamiltonian circuit – just check if all
vertices are visited exactly once in the candidate
path, repeating only the start/finish vertex

5-June-02 CSE 373 - Data Structures - 25 - NP 7

Nondeterministic Polynomial time
• Why “nondeterministic”?

› A nondeterministic algorithm is free to correctly choose
the next step to execute on the path to a solution

› Nondeterministic algorithms don’t exist – purely
theoretical idea invented to understand how hard a
problem could be

• But if we can check a solution in polynomial time,
then the complexity analysis corresponds to
algorithms that can search all possible solutions in
parallel and pick the correct one

5-June-02 CSE 373 - Data Structures - 25 - NP 8

Circuit Satisfiability

x1

x2

x3

1?

(x1,x2,x3) = (1,1,0)

5-June-02 CSE 373 - Data Structures - 25 - NP 9

superpolynomial

Complexity class relationships

NP - nondeterministic polynomial

P - polynomial

our story so far ...

Hamiltonian circuit

Circuit satisfiability

quicksort

5-June-02 CSE 373 - Data Structures - 25 - NP 10

Polynomial Time Reductions

Let R and Q be two problems. We say that R is
polynomially reducible to Q if there is a
polynomial time algorithm that converts each
input r∈ R to another input q∈ Q such that r is a
yes-instance of R if and only if q is a yes-
instance of Q.

Theorem: If R is polynomially reducible to Q and
there is a polynomial time algorithm for Q, then
there is a polynomial time algorithm for R.

5-June-02 CSE 373 - Data Structures - 25 - NP 11

Reduction Algorithm

• Given a polynomial time reduction from R to Q and
a polynomial algorithm to solve a problem from Q,
we can solve any problem in R in polynomial time

› Given an instance r of problem R, use the poly-time
reduction to transform it to an instance q of problem Q

› Run the poly-time decision algorithm for Q on instance q
› Use the answer for q as the answer for r

5-June-02 CSE 373 - Data Structures - 25 - NP 12

Using a reduction to solve a problem

polynomial-time
reduction algorithm

from R to Q

polynomial-time
algorithm to decide Q

polynomial-time algorithm to decide R

problem r q
Y

N

Yes

No

[CLRS]

5-June-02 CSE 373 - Data Structures - 25 - NP 13

Using reduction on NP problems
• Many of the problems in NP can be converted

using a polynomial time reduction from one
problem statement to another
› using a polynomial time reduction

• All these problems can be considered
equivalent from the standpoint of “how hard
is it to find a solution?”
› solve one in polynomial time and you can solve

any of them in polynomial time!

5-June-02 CSE 373 - Data Structures - 25 - NP 14

NP-complete

• NP-complete problems are defined to be
those that satisfy the following:
› the problem is in NP, ie, a proposed solution

can be checked in polynomial time
› any other problem in NP can be reduced to this

problem in polynomial time, ie, there is a
mapping from all other problems in NP to this
problem

5-June-02 CSE 373 - Data Structures - 25 - NP 15

superpolynomial

Are P and NPC distinct?

NP

P
polynomial

Inquiring minds do not know!

NPC
NP-complete

polynomial
time reduction

5-June-02 CSE 373 - Data Structures - 25 - NP 16

P=NP?

• If any NP-complete problem is proved
polynomial-time solvable, then P=NP and
all problems in NP can be solved in
polynomial time

• If any NP-complete problem is proved not
polynomial-time solvable, then P∩NPC=∅
and no NP-complete problem can be solved
in polynomial time

5-June-02 CSE 373 - Data Structures - 25 - NP 17

P and NPC intersect? Maybe yes...

NP

P
polynomial

NPC
NP-complete

If any NP-complete problem is proved polynomial-time solvable, then
P=NP and all problems in NP can be solved in polynomial time

polynomial
time reduction P = NP

5-June-02 CSE 373 - Data Structures - 25 - NP 18

P and NPC intersect? Maybe no ...

NP

P
polynomial

NPC
NP-complete

If any NP-complete problem is proved not polynomial-time solvable, then
P∩NPC=∅ and no NP-complete problem can be solved in polynomial time

“Most theoretical computer scientists
view the relationship of P, NP, and
NPC this way. Both P and NPC are
wholly contained within NP, and
P∩NPC=∅ ” [CLRS]

Many people have tried for years
to find polynomial time
solutions to the many problems
in NPC, without success.

5-June-02 CSE 373 - Data Structures - 25 - NP 19

Why does this matter?

• Assume that P≠NP. Then there are many
problems for which we have no hope of
finding a polynomial time algorithm

• If we can show that a particular problem is
in NP, we should spend our energy on
finding heuristics or an approximate
solution, rather than trying to find an
efficient exact solution

5-June-02 CSE 373 - Data Structures - 25 - NP 20

There exists an NP-complete problem

• Steve Cook proved in 1971 that there exists at least one
NP-complete problem

• The Satisfiability problem is NP-complete.
• Satisfiability: Given a boolean formula in conjunctive

normal form (AND of ORs), is there an assignment of
the variables to 0’s and 1’s so that the resulting
formula evaluates to 1?

• Example:

• Since then, hundreds more have been analyzed
)()()()(432432421431 yyyyyyyyyyyy ∨∨∧∨∨∧∨∨∧∨∨

5-June-02 CSE 373 - Data Structures - 25 - NP 21

What are the problem domains?

• NP-complete problems arise in diverse
domains
› boolean logic, graphs, arithmetic, network

design, sets and partitions, storage and retrieval,
sequencing and scheduling, mathematical
programming, algebra and number theory,
games and puzzles, automata and language
theory, program optimization, and more

5-June-02 CSE 373 - Data Structures - 25 - NP 22

Formula Satisfiability

• Input description: Given a boolean formula in
conjunctive normal form

• Problem description: Is there a truth
assignment for the variables that causes the
formula to evaluate to 1.

• Special case where every clause is disjunction of
exactly 3 literals also NP complete (called 3-SAT)

• Example: digital design, hardware
testing,….

5-June-02 CSE 373 - Data Structures - 25 - NP 23

Traveling Salesman Problem

• Input description: A weighted graph G, L
• Output description: Is there a tour of length

at most L that visits each of the vertices
exactly once.

• Optimization version: minimize the length
of the tour.

5-June-02 CSE 373 - Data Structures - 25 - NP 24

Vertex Coloring

• Input description: A graph G=(V,E), k

• Problem description: Is it possible to color
the vertices of the graph using at most k colors
such that for each edge (i,j) in E, vertices i and j
have different colors

• Optimization version: minimize the number
of colors used.

• Example: Register allocation for compilers.

5-June-02 CSE 373 - Data Structures - 25 - NP 25

Independent Set

• Input description: A graph G=(V,E), k
• Problem description: Is there a subset S of

V of size at least k such that no pair of
vertices in S has an edge between them.

• Example:
› Identifying location for a new franchise service such

that no two locations are close enough to compete with
each other.

› Highest capacity code for given communication
channel.

5-June-02 CSE 373 - Data Structures - 25 - NP 26

Hamiltonian Cycle

• Input description: A graph G=(V,E)
• Problem description: Is there an ordering of

the vertices such that adjacent vertices in
the ordering are connected by an edge and
each vertex is visited exactly once.

• Example:
 Triangle strip problem in graphics

5-June-02 CSE 373 - Data Structures - 25 - NP 27

Clique

• Input description: A graph G=(V,E), k
• Problem description: Is there a subset S of

V of size at least k such that for all x,y in S,
(x,y) in E.

• Optimization Version: Find maximum sized
subset S.

5-June-02 CSE 373 - Data Structures - 25 - NP 28

Graph Partition

• Input description: A weighted graph G=(V,E)
and integers j,k

• Problem description: Is there a partition of the
vertices into two subsets such that each subset has
size at most j, and the weight of edges connecting
the two subsets is at most k.

• Example:
 VLSI layout

5-June-02 CSE 373 - Data Structures - 25 - NP 29

Essence of NP-completeness

• When we’re given a problem we can’t solve
efficiently, we try to find whether it is
equivalent to other problems we can’t solve
efficiently.

• Hundreds (thousands?) of equivalently hard
NP-complete problems of immense
practical importance. (scheduling, resource
allocation, hardware design and test,……..)

5-June-02 CSE 373 - Data Structures - 25 - NP 30

To prove problem Q is NP-complete

1. Prove it’s in NP
2. Select a known NP-complete problem R.
3. Describe a polynomial time computable algorithm

that computes a function f mapping every instance
of R to some instance of Q.

4. Prove that for every yes-instance of R maps to a
yes-instance of Q, and every no-instance of R
maps to a no-instance of Q.

5-June-02 CSE 373 - Data Structures - 25 - NP 31

Coping with NP-completeness
• Given that it is difficult to find fast algorithms for NPC problems,

what do we do?
• Alternatives:

› Dynamic programming: Avoid repeatedly solving the same
subproblem – use table to store results (see Chap. 10)

› Settle for algorithms that are fast on average: Worst case still
takes exponential time, but doesn’t occur very often

› Settle for fast algorithms that give near-optimal solutions: In
TSP, may not give the cheapest tour, but maybe good enough

› Try to get a “wimpy exponential” time algorithm: It’s okay if
running time is O(1.00001N) – bad only for N > 1,000,000

• Take CSE 417!

