Paths and Circuits

CSE 373 - Data Structures
June 3, 2002

Readings and References

- Reading
> Section 9.6-9.7, Data Structures and Algorithm Analysis in C, Weiss
- Other References

It's Puzzle Time!

Maybe yes, maybe no

Is it possible to arrange a walking tour which crosses each of the seven bridges exactly once?

The Seven Bridges of Königsberg over the River Pregel in the early 1700's
htp://www-gap.dcs.st-and.ac.uk/-history/Miscellaneous/Konigsberg.html

Leonhard Euler (1707-1783)

- In 1736 the prolific Leonhard Euler published a solution to the Königsberg bridge problem
> Solutio problematis ad geometriam situs pertinentis
> The solution of a problem relating to the geometry of position
- Considered to be an important founding step in the development of graph theory
 and topology
> geometry without measurement
\qquad

Consider this as a graph problem.

Find a path that traverses every edge exactly once

Euler paths and circuits

- An Euler circuit in a graph G is a circuit containing every edge of G once and only once
, circuit - starts and ends at the same vertex
- An Euler path is a path that contains every edge of G once and only once
> may or may not be a circuit

An Euler Circuit

When?

3-June-02

Is it possible to arrange a walking tour which crosses each of the seven bridges exactly once?

Can you find a path that traverses every edge exactly once?

Euler Circuit? No, not all nodes are of even degree.

3-June-02

Euler Path? No, there are more than two nodes of odd degree.

- A connected graph has an Euler circuit if and only if each of its vertices is of even degree
> At every vertex, need one edge to get in and one edge to get out (or one to get out and one to get back in)
- A connected graph has an Euler path but not an Euler circuit if and only if it has exactly two vertices of odd degree
> the first and last vertices are distinct
> remember that an Euler circuit is also an Euler path

Euler Circuit or Path or None?

Euler Circuit? No, not all nodes are of even degree.

CSE 373 - Data Structures - 24 - Paths and Circuits

Euler Path? Yes, exactly two nodes of odd degree.

Euler Circuit Problem

- Problem: Given an undirected graph $\mathrm{G}=$ (V, E), find an Euler circuit in G
- Can check if one exists in linear time
, check degree of each vertex for the patterns previously described
- Given that an Euler circuit exists, how do we construct an Euler circuit for G?

Depth First Search and then Splice

- Basic Euler Circuit Algorithm:
> Do a depth-first search (DFS) from a vertex until you are back at this vertex
> Pick a vertex on this path with an unused edge and repeat 1.
> Splice all these paths into an Euler circuit
- Running time $=\mathrm{O}(|V|+|E|)$

Finding an Euler Circuit

Euler Circuit Example

Hamiltonian Circuits

- Euler circuit
>A cycle that goes through each edge exactly once
- Hamiltonian circuit
> A cycle that goes through each vertex exactly once
- They sound very similar, but they aren't at all
- The algorithms to analyze these circuits are at opposite ends of the complexity spectrum

Hamiltonian Circuit Examples

- Does graph I have:
> An Euler circuit?
> A Hamiltonian circuit?

- Does graph II have:
> An Euler circuit?
> A Hamiltonian circuit?

Finding Hamiltonian Circuits

- Problem: Find a Hamiltonian circuit in a graph $\mathrm{G}=(V, E)$
, Sub-problem: Does G contain a Hamiltonian circuit?
> Is there an easy (linear time) algorithm for checking this?

Finding Hamiltonian Circuits

- Does G contain a Hamiltonian circuit?
> No known easy algorithm for checking this...
- Try this
> Search through all paths to find one that visits each vertex exactly once
> Can use your favorite graph search algorithm (DFS!) to find various paths
> This is an exhaustive search ("brute force") algorithm

Exhaustive Search Algorithm Analysis

How bad is exponential time?

- How many paths?
- Can depict these paths as a search tree
- Let the average branching factor of each node in this tree be B (= average size of adjacency list for a vertex)
- $|V|$ vertices, each with $\approx B$ branches
- Total number of paths $\approx B \cdot B \cdot B \ldots \cdot B$ $=\underline{\mathrm{O}\left(\mathrm{B}^{|\mathrm{V}|}\right)}$
- Worst case \rightarrow Exponential time!

Search tree of paths from B 3-June-02 CSE 373 - Data Structures - 24 - Paths and Circuits

\mathbf{N}	$\log \mathbf{N}$	$\mathbf{N} \log \mathbf{N}$	\mathbf{N}^{2}	$\mathbf{2}^{\mathbf{N}}$
1	0	0	1	2
2	1	2	4	4
4	2	8	16	16
10	3	30	100	1024
100	7	700	10,000	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 ,}$ $\mathbf{0 0 0 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$
1000	10	10,000	$1,000,000$	Fo'gettaboutit!
$1,000,000$	20	$20,000,000$	$1,000,000,000,000$	ditto
$1,000,000,000$	30	$30,000,000,000$	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$	mega ditto plus

3-June-02
CSE 373 - Data Structures - 24 - Paths and Circuits
22

Polynomial vs Exponential Time

- Most of our algorithms have been $\mathrm{O}(\log \mathrm{N}), \mathrm{O}(\mathrm{N}), \mathrm{O}(\mathrm{N}$ $\log \mathrm{N})$ or $\mathrm{O}\left(\mathrm{N}^{2}\right)$ running time for inputs of size N
, These are all polynomial time algorithms
, Their running time is $\mathrm{O}\left(\mathrm{N}^{\mathrm{k}}\right)$ for some $\mathrm{k}>0$
- Exponential time B^{N} is asymptotically worse than any polynomial function N^{k} for any k
> For any $k, \mathrm{~N}^{\mathrm{k}}$ is $\mathrm{o}\left(\mathrm{B}^{\mathrm{N}}\right)$ for any constant $\mathrm{B}>1$
- Polynomial time algorithms are "fast" algorithms
- Exponential time algorithms are "not fast"
> or "dog slow" to use the technical term
3-June-02
CSE 373 - Data Structures - 24 - Paths and Circuits

The complexity class P

- The set P is defined as the set of all problems that can be solved in polynomial worse case time
> this is the polynomial time complexity class
> contains problems whose time complexity to solve is $\mathrm{O}\left(\mathrm{N}^{\mathrm{k}}\right)$ for some k
- Examples of problems in P
> searching, sorting, topological sort, single-source shortest path, Euler circuit, etc.

The complexity class NP

- The set NP is the set of all problems for which a given candidate solution can be checked in polynomial time
- Example of a problem in NP:
, Hamiltonian circuit problem
> Given a candidate path, can test in linear time if it is a Hamiltonian circuit - just check if all vertices are visited exactly once in the candidate path, repeating only the start/finish vertex

Nondeterministic Polynomial time

- Why "nondeterministic"?
, A nondeterministic algorithm is free to correctly choose the next step to execute on the path to a solution
, Corresponds to algorithms that can search all possible solutions in parallel and pick the correct one
- If we can do this in polynomial time, then we can check a solution in polynomial time
- Nondeterministic algorithms don't exist - purely theoretical idea invented to understand how hard a problem could be
3-June-02

