## Graphs <br> Minimum Spanning Trees

## CSE 373 - Data Structures <br> May 29, 2002

## Readings and References

- Reading
> Section 9.5, Data Structures and Algorithm Analysis in C, Weiss
- Other References


## Breadth First Search (BFS)

- We used Breadth First Search for finding shortest paths in an unweighted graph
> Use a queue to explore neighbors of source vertex, neighbors of each neighbor, and so on: 1 edge away, two edges away, etc.
- BFS spreads out like ripples in a pond
> all nodes at a given distance are looked at before we go any further outward


## Breadth-First Search

- Basic Idea: Starting at node s, find vertices that can be reached using $0,1,2,3, \ldots, \mathrm{~N}-1$ edges



## Breadth-First Search Algorithm

- Uses a queue to track vertices that are "nearby"
- source vertex is $\mathbf{s}$

```
Distance[s] = 0
Enqueue(s)
While queue is not empty
X = dequeue a vertex
For each vertex Y that is (adjacent to X and not
previously visited)
Distance[Y] = Distance[X] + 1
Previous[Y] = X
Enqueue Y
```

- Running time (same as topological sort) $=\mathbf{O}(|V|+|E|)$


## Breadth-First Search

- BFS(C): Starting at node C, find vertices that can be reached using $0,1,2,3, \ldots, N-1$ edges



## Depth First Search (DFS)

- A second way to explore all nodes in a graph
- DFS searches down one path as deep as possible
> When no new nodes available, it backtracks
, When backtracking, we explore side-paths that weren't taken
- DFS allows an easy recursive implementation
> So, DFS uses a stack while BFS uses a queue


## DFS Pseudocode

- Pseudocode for DFS:

```
DFS (v)
    If v is unvisited
        mark v as visited
        print v (or process v)
        for each edge (v,w)
            DFS (w)
```



- Works for directed or undirected graphs
- Running time $=\mathbf{O}(|\boldsymbol{V}|+|\boldsymbol{E}|)$



## Depth-First Search

- DFS(C): searches down one path as deeply as possible, then backtracks and does it again



## What about DFS on this graph?

- What happens when you do DFS(" 142 ")?

Go as deep as possible, Then backtrack...


## We get a "spanning" tree...



## DFS and BFS may give different trees...



## Spanning Tree Definition

- Spanning tree: a subset of edges from a connected graph that:
> touches all vertices in the graph (spans the graph)
$>$ forms a tree (is connected and contains no cycles)

- Minimum spanning tree: the spanning tree with the least total edge cost


## Minimum Spanning Tree (MST)

We are given a weighted, undirected graph $G=(V, E)$, with weight function $w: E \rightarrow \mathbf{R}$ mapping edges to real valued weights

Problem: Find the minimum cost spanning tree


## Why minimum spanning trees?

- Lots of applications
- Minimize length of gas pipelines between cities
- Find cheapest way to wire a house (with minimum cable)
- Find a way to connect various routers on a network that minimizes total delay
- Etc...


## Finding Min Spanning Trees

- For any spanning tree T , inserting an edge $e_{\text {new }}$ not in T creates a cycle
> Removing any edge $e_{\text {old }}$ from the cycle gives back a spanning tree
, If inserted edge $e_{\text {new }}$ has a lower cost than removed edge $e_{\text {old }}$, we get a lower cost spanning tree
- Create a spanning tree as follows:
, Add an edge of minimum cost that doesn't create a cycle
, Repeat for $|V|-1$ edges
- Resulting spanning tree has minimum cost:
> if you could replace an edge with another edge of lower cost without creating a cycle, our algorithm would have picked it


## Min Spanning Tree Algorithms

- Prim
> pick lowest cost edge connected to known spanning tree that doesn't create a cycle and expand to include it in the tree
- Kruskal
> pick lowest cost edge not yet in a tree that doesn't create a cycle and expand to include it somewhere in the forest


## Prim's Algorithm for Finding the MST

- Starting from an empty tree, $T$, pick a vertex, $v_{0}$, at random and initialize:
$S=\left\{v_{0}\right\}$ and $E=\{ \}$
- Choose the vertex $v$ not in $S$ such that edge weight from $v$ to a vertex in $S$ is minimal (get greedy!)
- Add $v$ to $S$ and the edge to $E$ if no cycle is created
- Repeat until all vertices have been added



## Prim's Algorithm for Finding the MST

- Starting from an empty tree, $T$, pick a vertex, $v_{0}$, at random and initialize: $S=\left\{v_{0}\right\}$ and $E=\{ \}$



## Prim's Algorithm for Finding the MST

- Starting from an empty tree, $T$, pick a vertex, $v_{0}$, at random and initialize:
$S=\left\{v_{0}\right\}$ and $E=\{ \}$
- Choose the vertex $v$ not in $S$ such that edge weight from $v$ to a vertex in $S$ is minimal (greedy algo)



## Prim's Algorithm for Finding the MST

- Starting from an empty tree, $T$, pick a vertex, $v_{0}$, at random and initialize:
$S=\left\{v_{0}\right\}$ and $E=\{ \}$
- Choose the vertex $v$ not in $S$ such that edge weight from $v$ to a vertex in $S$ is minimal
- Add $v$ to $S$ and the edge to $E$ if no cycle is created



## Prim's Algorithm for Finding the MST

- Starting from an empty tree, $T$, pick a vertex, $v_{0}$, at random and initialize:
$S=\left\{v_{0}\right\}$ and $E=\{ \}$
- Choose the vertex $v$ not in $S$ such that edge weight from $v$ to a vertex in $S$ is minimal
- Add $v$ to $S$ and the edge to $E$ if no cycle is created
- Repeat until all vertices have been added



## Prim's Algorithm for Finding the MST

- Starting from an empty tree, $T$, pick a vertex, $v_{0}$, at random and initialize:
$S=\left\{v_{0}\right\}$ and $E=\{ \}$
- Choose the vertex $v$ not in $S$ such that edge weight from $v$ to a vertex in $S$ is minimal
- Add $v$ to $S$ and the edge to $E$ if no cycle is created
- Repeat until all vertices have been added



## Prim's Algorithm for Finding the MST

- Starting from an empty tree, $T$, pick a vertex, $v_{0}$, at random and initialize:
$S=\left\{v_{0}\right\}$ and $E=\{ \}$
- Choose the vertex $v$ not in $S$ such that edge weight from $v$ to a vertex in $S$ is minimal
- Add $v$ to $S$ and the edge to $E$ if no cycle is created
- Repeat until all vertices have been added



## Prim's Algorithm for Finding the MST

- Starting from an empty tree, $T$, pick a vertex, $v_{0}$, at random and initialize:
$S=\left\{v_{0}\right\}$ and $E=\{ \}$
- Choose the vertex $v$ not in $S$ such that edge weight from $v$ to a vertex in $S$ is minimal
- Add $v$ to $S$ and the edge to $E$ if no cycle is created
- Repeat until all vertices have been added



## Prim's Algorithm for Finding the MST

Done!
Total cost $=1+3+4+1+1$

$$
=10
$$



## Prim's Algorithm Analysis

```
Initialize connection cost of each node to }\infty\mathrm{ and mark it unknown
Initialize connection cost of one selected node S to 0, with
    Prev[S] = 0
While there are unknown nodes left in the graph
    Select the unknown node N with the lowest connection cost
    Mark N as known
    For each unknown node }A\mathrm{ adjacent to }
        If cost of (N,A) < A's cost
        A's cost = cost of (N, A)
        Prev[A] = N //store preceding node
```

- This is almost identical to Dijkstra's algorithm
- Run time is $\mathrm{O}\left(|V|^{2}\right)$ without heaps and $\mathrm{O}(|V| \log |V|+$ $|E| \log |V|)$ using binary heaps


## Kruskal's Algorithm for Finding the MST

Select edges in order of increasing cost and accept an edge only if it does not cause a cycle

```
Put all the vertices into single node trees by themselves
Put all the edges in a priority queue with key = edge cost
Repeat until |v|-1 edges have been accepted {
    Extract cheapest edge from priority queue
    If it forms a cycle
        ignore it
    else
        accept the edge - it will join two existing trees yielding
        a larger tree and reducing the forest by one tree
}
Return the accepted edges (they form the spanning tree)

\section*{Reducing the forest to a single tree}
- Initially, there are \(n\) different single vertex trees that partition the set of vertices
- After you have added some edges, you have fewer (but larger) trees, which together still partition the set of vertices

\section*{Detecting Cycles}
- When do you get a cycle? If you add an edge \((u, v)\) where both \(u\) and \(v\) are already in the same tree \(\mathrm{T}_{\mathrm{i}}\), you get a cycle
> Therefore, to check for cycles, you only need to find out if \(u\) and \(v\) are in the same tree
> If not, then the edge can be added and we union vertices in u's tree with vertices in v's tree
- What is your favorite data structure for such operations?

\section*{Kruskal's use of Disjoint Set ADT}
- In Kruskal's algorithm, connected vertices form equivalence classes
, each tree is a set of connected vertices
> being connected is the equivalence relation
- Initially, each vertex is in a class by itself
- As edges are added, more vertices become related and the equivalence classes grow in size and are reduced in number
- Until finally all the vertices are in a single equivalence class
29-May-02

\section*{Kruskal's use of Disjoint Set ADT}
- Detecting cycles is easy!
- For each edge (u,v) that you're thinking about adding
> If \(\operatorname{Find}(u)==\operatorname{Find}(v)\), then \(u\) and \(v\) are in the same class (same tree) and therefore the edge will form a cycle, so reject it
> Otherwise, we accept the edge and do Union(u,v), thereby indicating that all of the elements in the two trees are now in the same tree

\section*{Kruskal initilized}


All the vertices are in a forest of single element trees. All the vertices are in a set of single element equivalence classes.
\[
\mathrm{V}=\{\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{e}\},\{\mathrm{f}\},\{\mathrm{g}\},\{\mathrm{h}\},\{\mathrm{i}\}\}
\]

\section*{Kruskal in action}

\section*{The cheapest edge is \(\mathrm{h}-\mathrm{g}\)}


Join h and g into a 2-element tree.
\[
\mathrm{V}=\{\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{e}\},\{\mathrm{f}\},\{\mathrm{g}, \mathrm{~h}\},\{i\}\}
\]

\section*{Kruskal in action}

\section*{The next cheapest edge is \(\mathrm{c}-\mathrm{i}\)}


Join c and i into a 2-element tree
\[
\mathrm{V}=\{\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}, \mathrm{i}\},\{\mathrm{d}\},\{\mathrm{e}\},\{\mathrm{f}\},\{\mathrm{g}, \mathrm{~h}\}\}
\]

\section*{Kruskal in action}

\section*{The next cheapest edge is g-f}


Join \(g\) tree and \(f\) into a 3-element tree
\[
\mathrm{V}=\{\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}, \mathrm{i}\},\{\mathrm{d}\},\{\mathrm{e}\},\{\mathrm{g}, \mathrm{f}, \mathrm{~h}\}\}
\]

\section*{Kruskal in action}

\section*{The next cheapest edge is \(a-b\)}


Join a and b into a 2-element tree

\section*{Kruskal in action}

\section*{The next cheapest edge is c-f}


Join c and f trees into one 5-element tree
\[
\mathrm{V}=\{\{\mathrm{a}, \mathrm{~b}\},\{\mathrm{c}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}\},\{\mathrm{d}\},\{\mathrm{e}\}\}
\]

\section*{Kruskal in action}

\section*{The next cheapest edge is g - i}


Find \((\mathrm{g})\) is c Find(i) is also c
g-i forms a cycle. Ignore this edge.
\[
\mathrm{V}=\{\{\mathrm{a}, \mathrm{~b}\},\{\mathrm{c}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}\},\{\mathrm{d}\},\{\mathrm{e}\}\}
\]

\section*{Kruskal in action}

\section*{The next cheapest edge is \(\mathrm{c}-\mathrm{d}\)}


Join c tree and dinto one 6-element tree
\[
\mathrm{V}=\{\{\mathrm{a}, \mathrm{~b}\},\{\mathrm{c}, \mathrm{~d}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}\},\{\mathrm{e}\}\}
\]

\section*{Kruskal in action}

\section*{The next cheapest edge is \(\mathrm{h}-\mathrm{i}\)}


Find(h) is c Find( \((\mathrm{i})\) is c
h-i forms a cycle. Ignore this edge.
\[
\mathrm{V}=\{\{\mathrm{a}, \mathrm{~b}\},\{\mathrm{c}, \mathrm{~d}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}\},\{\mathrm{e}\}\}
\]

\section*{Kruskal in action}

\section*{The next cheapest edge is a-h}


Join a and h trees into one tree
\[
\mathrm{V}=\{\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}\},\{\mathrm{e}\}\}
\]

\section*{Kruskal done!}


\section*{Kruskal's Algorithm for Finding the MST}

Select edges in order of increasing cost and accept an edge only if it does not cause a cycle
```

Put all the vertices into single node trees by themselves }O(|V|
Put all the edges in a priority queue with key = edge cost }\textrm{O}(|E|
Repeat until |v|-1 edges have been accepted { O(|E|)
Extract cheapest edge from priority queue O(log}|E|
If it forms a cycle
ignore it Worst case requires }|E|\mathrm{ DeleteMin operations
else
accept the edge - it will join two existing trees yielding
a larger tree and reducing the forest by one tree
}
Return the accepted edges (they form the spanning tree)
total worst case running time is O

## Kruskal versus Prim

- Worst case running time
> Prim: $\mathrm{O}(|V| \log |V|+|E| \log |V|)$
> Kruskal: $\mathrm{O}(|E| \log |E|)=\mathrm{O}(|E| \log |V|)$ since $|E|$ $=\mathrm{O}\left(|V|^{2}\right)$
- Kruskal usually runs much faster than $\mathrm{O}(|E|$ $\log |V|)$ in practice
> Not all edges need to be DeleteMin-ed typically
> The required $|V|-1$ edges are usually found quickly
> So, Kruskal tends to be faster than Prim

