Graphs Minimum Spanning Trees

CSE 373 - Data Structures May 29, 2002

Readings and References

Reading

> Section 9.5, Data Structures and Algorithm Analysis in C, Weiss

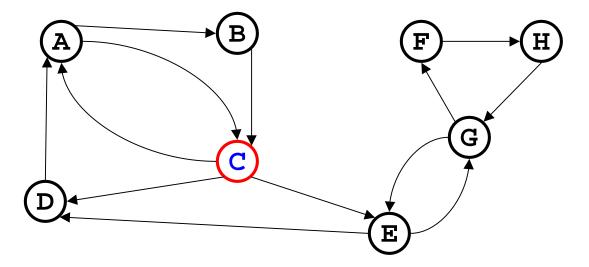
Other References

Breadth First Search (BFS)

- We used Breadth First Search for finding shortest paths in an unweighted graph
 - Use a queue to explore neighbors of source vertex, neighbors of each neighbor, and so on:
 1 edge away, two edges away, etc.
- BFS spreads out like ripples in a pond
 - all nodes at a given distance are looked at before we go any further outward

Breadth-First Search

• <u>Basic Idea</u>: Starting at node s, find vertices that can be reached using 0, 1, 2, 3, ..., N-1 edges



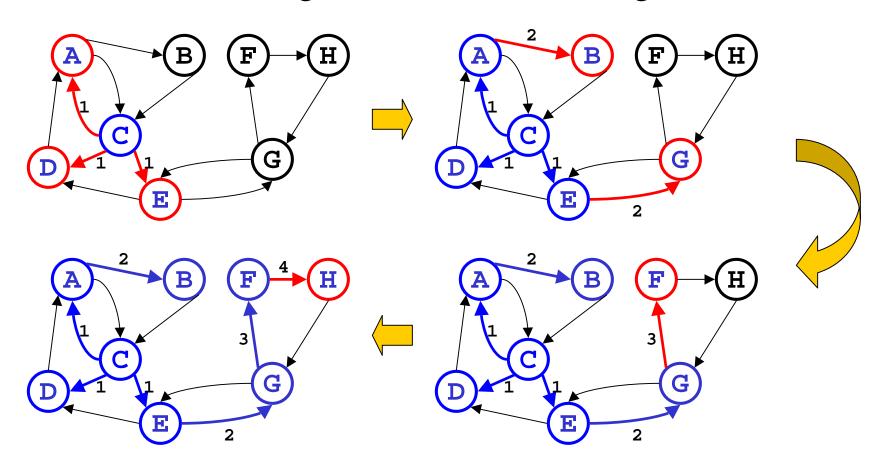
Breadth-First Search Algorithm

- Uses a queue to track vertices that are "nearby"
- source vertex is s

• Running time (same as topological sort) = O(|V| + |E|)

Breadth-First Search

• BFS(C): Starting at node C, find vertices that can be reached using 0, 1, 2, 3, ..., N-1 edges



Depth First Search (DFS)

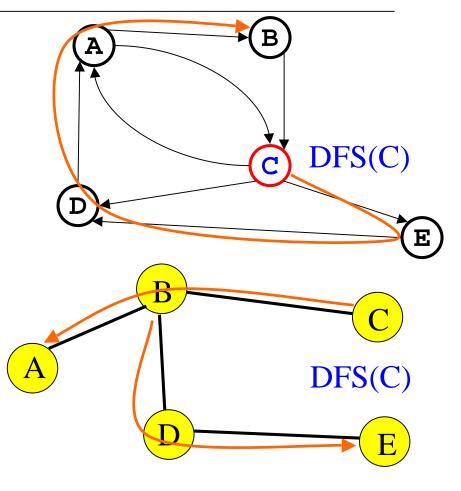
- A second way to explore all nodes in a graph
- DFS searches down one path as deep as possible
 - > When no new nodes available, it *backtracks*
 - > When backtracking, we explore side-paths that weren't taken
- DFS allows an easy recursive implementation
 - > So, DFS uses a stack while BFS uses a queue

DFS Pseudocode

Pseudocode for DFS:

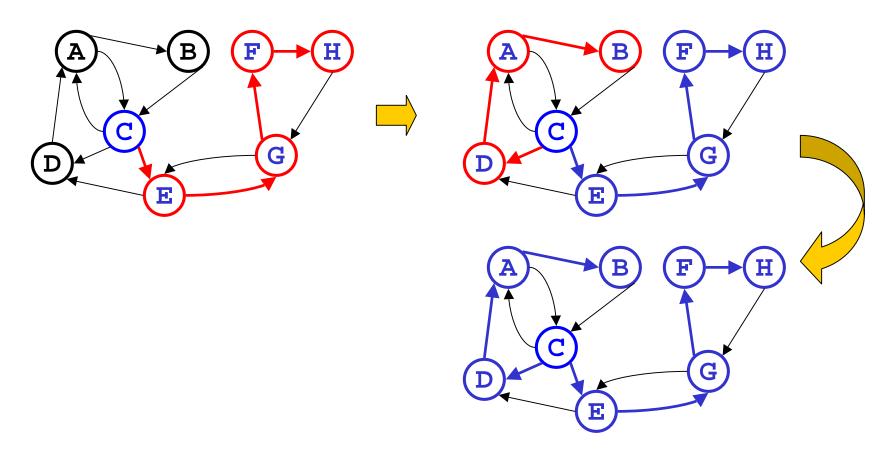
```
DFS(v)
If v is unvisited
  mark v as visited
  print v (or process v)
  for each edge (v,w)
    DFS(w)
```

- Works for directed or undirected graphs
- Running time = O(|V| + |E|)



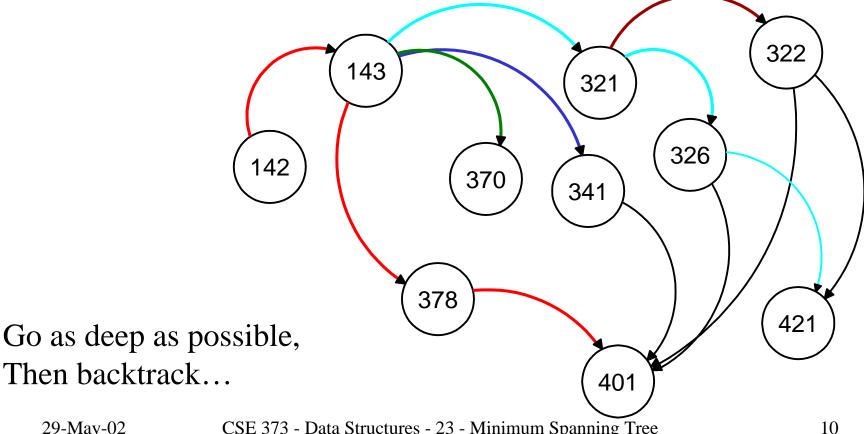
Depth-First Search

• DFS(C): searches down one path as deeply as possible, then backtracks and does it again

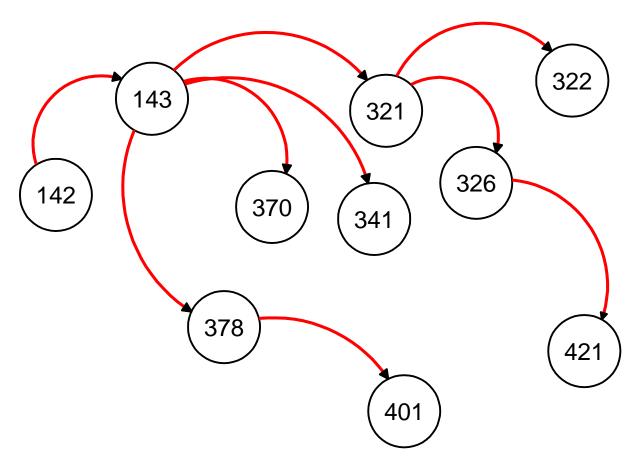


What about DFS on this graph?

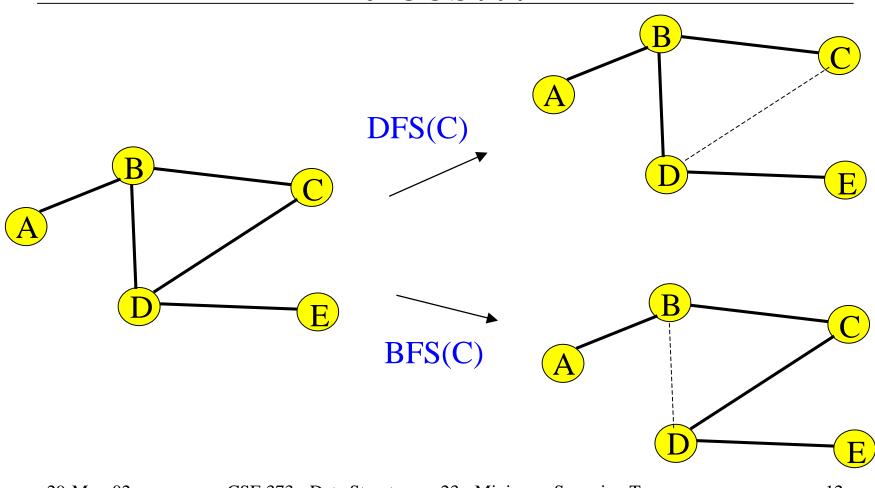
• What happens when you do DFS("142")?



We get a "spanning" tree...

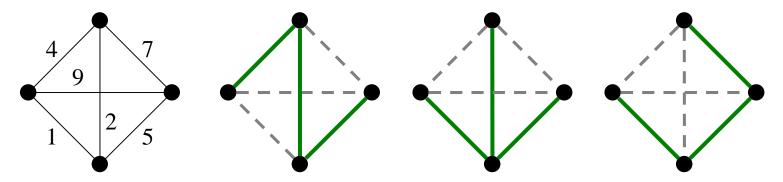


DFS and BFS may give different trees...



Spanning Tree Definition

- *Spanning tree*: a subset of edges from a connected graph that:
 - > touches all vertices in the graph (*spans* the graph)
 - > forms a tree (is connected and contains no cycles)

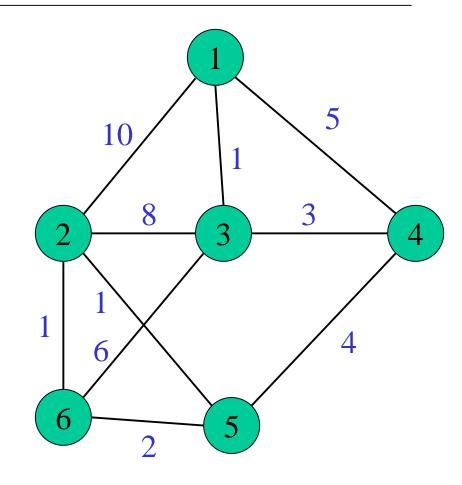


• *Minimum spanning tree*: the spanning tree with the least total edge cost

Minimum Spanning Tree (MST)

We are given a weighted, undirected graph G = (V, E), with weight function $w: E \rightarrow \mathbf{R}$ mapping edges to real valued weights

Problem: Find the minimum cost spanning tree



Why minimum spanning trees?

- Lots of applications
- Minimize length of gas pipelines between cities
- Find cheapest way to wire a house (with minimum cable)
- Find a way to connect various routers on a network that minimizes total delay
- Etc...

Finding Min Spanning Trees

- For any spanning tree T, inserting an edge e_{new} not in T creates a cycle
 - Removing any edge e_{old} from the cycle gives back a spanning tree
 - > If inserted edge e_{new} has a lower cost than removed edge e_{old} , we get a lower cost spanning tree
- Create a spanning tree as follows:
 - > Add an edge of minimum cost that doesn't create a cycle
 - \rightarrow Repeat for |V|-1 edges
- Resulting spanning tree has minimum cost:
 - > if you could replace an edge with another edge of lower cost without creating a cycle, our algorithm would have picked it

Min Spanning Tree Algorithms

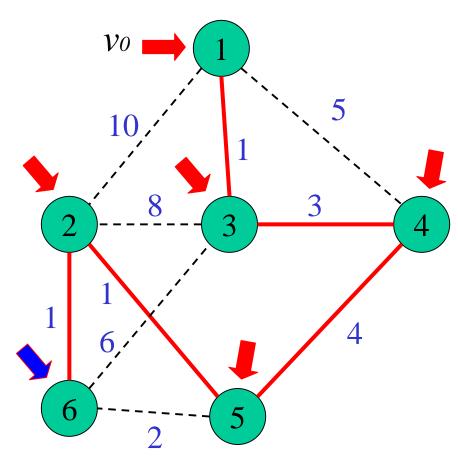
Prim

> pick lowest cost edge connected to known spanning tree that doesn't create a cycle and expand to include it in the tree

Kruskal

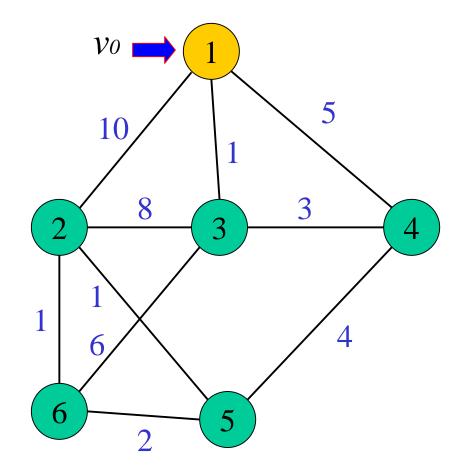
> pick lowest cost edge not yet in a tree that doesn't create a cycle and expand to include it somewhere in the forest

- Starting from an empty tree, T, pick a vertex, v_0 , at random and initialize:
 - $S = \{v_0\} \text{ and } E = \{\}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal (get greedy!)
- Add v to S and the edge to
 E if no cycle is created
- Repeat until all vertices have been added



Starting from an empty tree, T, pick a vertex, v_0 , at random and initialize:

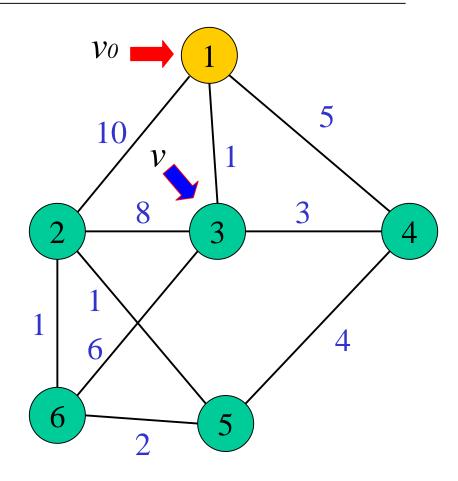
$$S = \{v_0\} \text{ and } E = \{\}$$



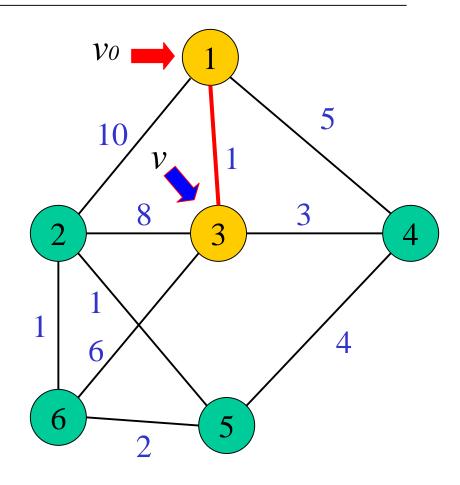
• Starting from an empty tree, T, pick a vertex, v_0 , at random and initialize:

$$S = \{v_0\} \text{ and } E = \{\}$$

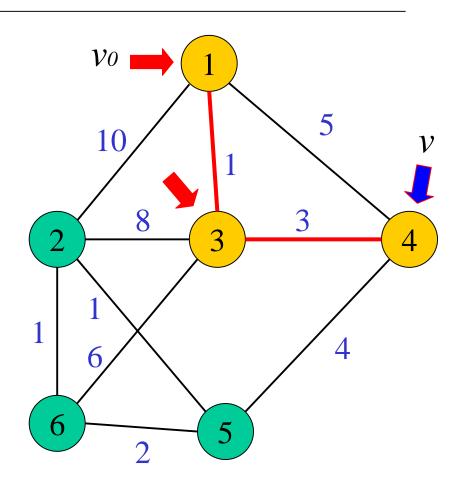
• Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal (greedy algo)



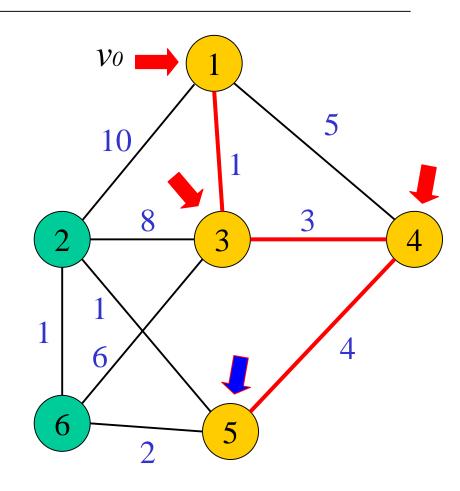
- Starting from an empty tree, T, pick a vertex, v_0 , at random and initialize:
 - $S = \{v_0\} \text{ and } E = \{\}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal
- Add v to S and the edge to
 E if no cycle is created



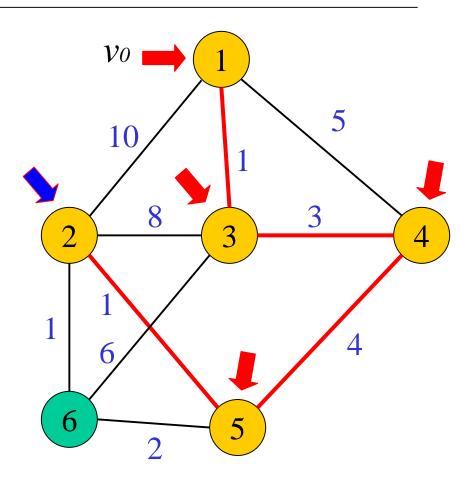
- Starting from an empty tree, T, pick a vertex, v_0 , at random and initialize:
 - $S = \{v_0\} \text{ and } E = \{\}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal
- Add v to S and the edge to
 E if no cycle is created
- Repeat until all vertices have been added



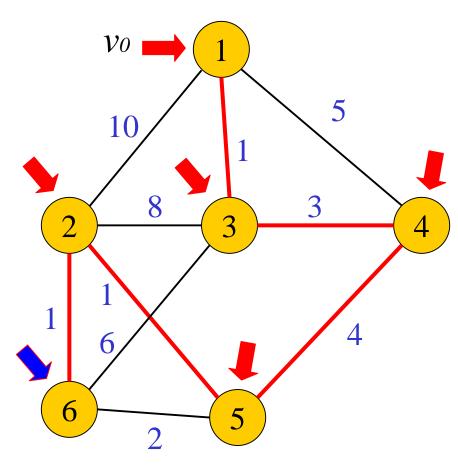
- Starting from an empty tree, T, pick a vertex, v_0 , at random and initialize:
 - $S = \{v_0\} \text{ and } E = \{\}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal
- Add v to S and the edge to
 E if no cycle is created
- Repeat until all vertices have been added



- Starting from an empty tree, T, pick a vertex, v_0 , at random and initialize:
 - $S = \{v_0\} \text{ and } E = \{\}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal
- Add v to S and the edge to
 E if no cycle is created
- Repeat until all vertices have been added



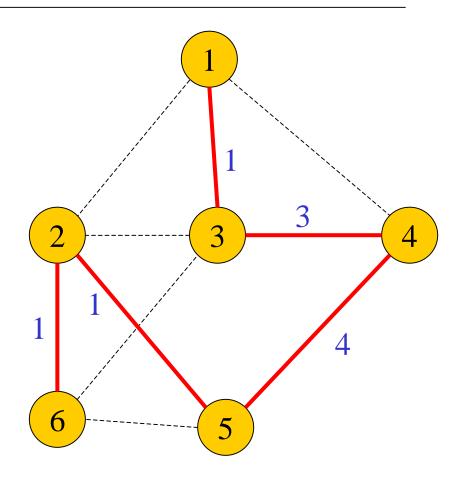
- Starting from an empty tree, T, pick a vertex, v_0 , at random and initialize:
 - $S = \{v_0\} \text{ and } E = \{\}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal
- Add v to S and the edge to
 E if no cycle is created
- Repeat until all vertices have been added



Done!

Total cost =
$$1 + 3 + 4 + 1 + 1$$

= 10



Prim's Algorithm Analysis

- This is almost identical to Dijkstra's algorithm
- Run time is $O(|V|^2)$ without heaps and $O(|V| \log |V| + |E| \log |V|)$ using binary heaps

Kruskal's Algorithm for Finding the MST

Select edges in order of increasing cost and accept an edge only if it does not cause a cycle

```
Put all the vertices into single node trees by themselves
Put all the edges in a priority queue with key = edge cost
Repeat until |V|-1 edges have been accepted {
    Extract cheapest edge from priority queue
    If it forms a cycle
        ignore it
    else
        accept the edge - it will join two existing trees yielding
        a larger tree and reducing the forest by one tree
}
Return the accepted edges (they form the spanning tree)
```

Reducing the forest to a single tree

- Initially, there are *n* different single vertex trees that partition the set of vertices
- After you have added some edges, you have fewer (but larger) trees, which together still partition the set of vertices

Detecting Cycles

- When do you get a cycle? If you add an edge (u,v) where both u and v are already in the same tree T_i, you get a cycle
 - > Therefore, to check for cycles, you only need to <u>find</u> out if u and v are in the same tree
 - > If not, then the edge can be added and we <u>union</u> vertices in u's tree with vertices in v's tree
- What is your favorite data structure for such operations?

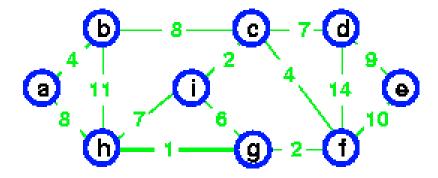
Kruskal's use of Disjoint Set ADT

- In Kruskal's algorithm, connected vertices form equivalence classes
 - > each tree is a set of connected vertices
 - > being connected is the equivalence relation
- Initially, each vertex is in a class by itself
- As edges are added, more vertices become related and the equivalence classes grow in size and are reduced in number
- Until finally all the vertices are in a single equivalence class

Kruskal's use of Disjoint Set ADT

- Detecting cycles is easy!
- For each edge (u,v) that you're thinking about adding
 - > If Find(u) == Find(v), then u and v are in the same class (same tree) and therefore the edge will form a cycle, so reject it
 - > Otherwise, we accept the edge and do Union(u,v), thereby indicating that all of the elements in the two trees are now in the same tree

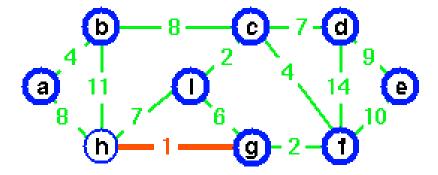
Kruskal initilized



All the vertices are in a forest of single element trees. All the vertices are in a set of single element equivalence classes.

$$V = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}\}\}$$

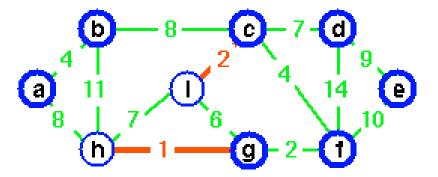
The cheapest edge is h-g



Join h and g into a 2-element tree.

$$V = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g,h\}, \{i\}\}\}$$

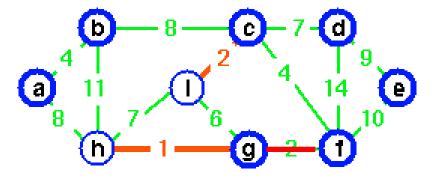
The next cheapest edge is c-i



Join c and i into a 2-element tree

$$V = \{\{a\}, \{b\}, \{c,i\}, \{d\}, \{e\}, \{f\}, \{g,h\}\}\}$$

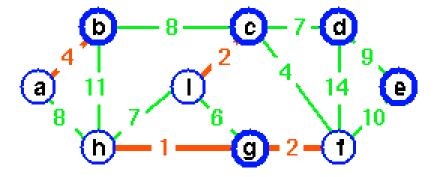
The next cheapest edge is g-f



Join g tree and f into a 3-element tree

$$V = \{\{a\}, \{b\}, \{c,i\}, \{d\}, \{e\}, \{g,f,h\}\}\}$$

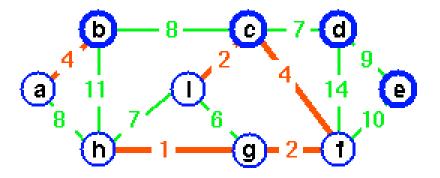
The next cheapest edge is a-b



Join a and b into a 2-element tree

$$V = \{\{a,b\},\{c,i\},\{d\},\{e\},\{g,f,h\}\}\}$$

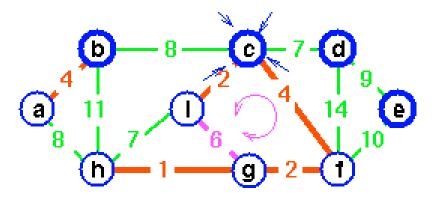
The next cheapest edge is c-f



Join c and f trees into one 5-element tree

$$V = \{\{a,b\}, \{c,f,g,h,i\}, \{d\}, \{e\}\}\}$$

The next cheapest edge is g-i

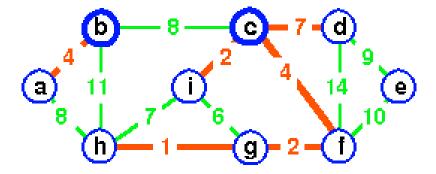


Find(g) is c Find(i) is also c

g-i forms a cycle. Ignore this edge.

$$V = \{\{a,b\},\{c,f,g,h,i\},\{d\},\{e\}\}\}$$

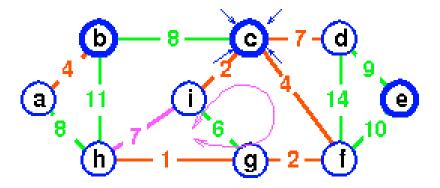
The next cheapest edge is c-d



Join c tree and d into one 6-element tree

$$V = \{\{a,b\}, \{c,d,f,g,h,i\}, \{e\}\}\$$

The next cheapest edge is h-i

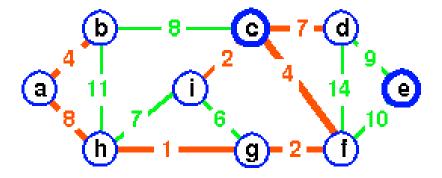


Find(h) is c Find(i) is c

h-i forms a cycle. Ignore this edge.

$$V = \{\{a,b\},\{c,d,f,g,h,i\},\{e\}\}\$$

The next cheapest edge is a-h



Join a and h trees into one tree

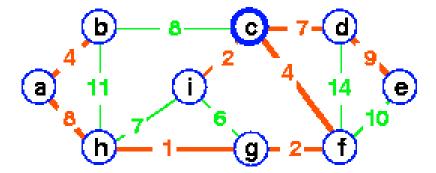
$$V = \{\{a,b,c,d,f,g,h,i\},\{e\}\}$$

Kruskal done!

The next cheapest edge is b-c

The next cheapest edge is d-e

Find(b) is c Find(c) is c



b-c forms a cycle. Ignore this edge.

Join c tree and e into one tree

$$V = \{\{a,b,c,d,e,f,g,h,i\}\}$$

Kruskal's Algorithm for Finding the MST

Select edges in order of increasing cost and accept an edge only if it does not cause a cycle

```
O(|V|)
Put all the vertices into single node trees by themselves
                                                                O(|E|)
Put all the edges in a priority queue with key = edge cost
Repeat until |V|-1 edges have been accepted {
                                                                O(|E|)
    Extract cheapest edge from priority queue
                                                             O(\log |E|)
    If it forms a cycle
      ignore it
                         Worst case requires |E| DeleteMin operations
    else
      accept the edge - it will join two existing trees yielding
      a larger tree and reducing the forest by one tree
Return the accepted edges (they form the spanning tree)
                            total worst case running time is O(|E| \cdot \log |E|)
```

Kruskal versus Prim

- Worst case running time
 - \rightarrow Prim: O(|V| log |V| + |E| log |V/)
 - > Kruskal: $O(|E| \log |E|) = O(|E| \log |V|)$ since |E|= $O(|V|^2)$
- Kruskal usually runs much faster than $O(|E| \log |V|)$ in practice
 - > Not all edges need to be DeleteMin-ed typically
 - > The required |V|-1 edges are usually found quickly
 - > So, Kruskal tends to be faster than Prim