
Graphs
Minimum Spanning Trees

CSE 373 - Data Structures
May 29, 2002

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 2

Readings and References

• Reading
› Section 9.5, Data Structures and Algorithm Analysis in C, Weiss

• Other References

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 3

Breadth First Search (BFS)

• We used Breadth First Search for finding
shortest paths in an unweighted graph
› Use a queue to explore neighbors of source

vertex, neighbors of each neighbor, and so on:
1 edge away, two edges away, etc.

• BFS spreads out like ripples in a pond
› all nodes at a given distance are looked at

before we go any further outward

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 4

Breadth-First Search

• Basic Idea: Starting at node s, find vertices
that can be reached using 0, 1, 2, 3, …, N-1
edges

A

C

B

D

F H

G

E

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 5

Breadth-First Search Algorithm
• Uses a queue to track vertices that are “nearby”
• source vertex is s

Distance[s] = 0

Enqueue(s)

While queue is not empty

X = dequeue a vertex

For each vertex Y that is (adjacent to X and not
previously visited)

Distance[Y] = Distance[X] + 1

Previous[Y] = X

Enqueue Y

• Running time (same as topological sort) = O(|V| + |E|)

For each vertex

For each edge incident
with that vertex

Breadth-First Search
• BFS(C): Starting at node C, find vertices that can

be reached using 0, 1, 2, 3, …, N-1 edges

A

C

B

D

F H

G

E

1

1 1

A

C

B

D

F H

G

E

1

1 1

2

2

A

C

B

D

F H

G

E

1

1 1

2

2

3

A

C

B

D

F H

G

E

1

1 1

2

2

3

4

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 7

Depth First Search (DFS)
• A second way to explore all nodes in a

graph
• DFS searches down one path as deep as

possible
› When no new nodes available, it backtracks
› When backtracking, we explore side-paths that

weren’t taken
• DFS allows an easy recursive implementation

› So, DFS uses a stack while BFS uses a queue
29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 8

DFS Pseudocode
• Pseudocode for DFS:

DFS(v)

If v is unvisited

mark v as visited

print v (or process v)

for each edge (v,w)

DFS(w)

• Works for directed or undirected
graphs

• Running time = O(|V| + |E|)
A

B
C

D E

A

C

B

D
E

DFS(C)

DFS(C)

Depth-First Search
• DFS(C): searches down one path as deeply as

possible, then backtracks and does it again

A

C

B

D

F H

G

E

A

C

B

D

F H

G

E

A

C

B

D

F H

G

E 29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 10

What about DFS on this graph?
• What happens when you do DFS(“142”)?

321143

142

322

326
341370

378

401

421Go as deep as possible,
Then backtrack…

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 11

We get a “spanning” tree…

321143

142

322

326
341370

378

401

421

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 12

DFS and BFS may give different
trees…

DFS(C)

A

B
C

D E

A

B
C

D E

A

B
C

D E

BFS(C)

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 13

• Spanning tree: a subset of edges from a connected
graph that:
› touches all vertices in the graph (spans the graph)
› forms a tree (is connected and contains no cycles)

• Minimum spanning tree: the spanning tree with the
least total edge cost

Spanning Tree Definition

4 7

1 5

9

2

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 14

1

32 4

6 5

10
1

5

4

3

2

6
1

1

8

We are given a
weighted, undirected
graph G = (V, E), with
weight function
w: E � R mapping
edges to real valued
weights
Problem: Find the
minimum cost spanning
tree

Minimum Spanning Tree (MST)

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 15

Why minimum spanning trees?
• Lots of applications
• Minimize length of gas pipelines between

cities
• Find cheapest way to wire a house (with

minimum cable)
• Find a way to connect various routers on a

network that minimizes total delay
• Etc…

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 16

Finding Min Spanning Trees
• For any spanning tree T, inserting an edge enew not in T

creates a cycle
› Removing any edge eold from the cycle gives back a spanning tree
› If inserted edge enew has a lower cost than removed edge eold, we get a

lower cost spanning tree

• Create a spanning tree as follows:
› Add an edge of minimum cost that doesn’t create a cycle
› Repeat for |V|-1 edges

• Resulting spanning tree has minimum cost:
› if you could replace an edge with another edge of lower cost without

creating a cycle, our algorithm would have picked it

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 17

Min Spanning Tree Algorithms

• Prim
› pick lowest cost edge connected to known

spanning tree that doesn’t create a cycle and
expand to include it in the tree

• Kruskal
› pick lowest cost edge not yet in a tree that

doesn’t create a cycle and expand to include it
somewhere in the forest

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 18

• Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
S = {v0} and E = {}

• Choose the vertex v not in
S such that edge weight
from v to a vertex in S is
minimal (get greedy!)

• Add v to S and the edge to
E if no cycle is created

• Repeat until all vertices
have been added

Prim’s Algorithm for Finding the MST

1

32 4

6 5

10
1

5

4

3

2

6
1

1

8

v0

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 19

1

32 4

6 5

10
1

5

4

3

2

6
1

1

8

v0
• Starting from an empty

tree, T, pick a vertex, v0, at
random and initialize:
S = {v0} and E = {}

Prim’s Algorithm for Finding the MST

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 20

• Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
S = {v0} and E = {}

• Choose the vertex v not in
S such that edge weight
from v to a vertex in S is
minimal (greedy algo)

Prim’s Algorithm for Finding the MST

1

32 4

6 5

10
1

5

4

3

2

6
1

1

8

v0

v

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 21

• Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
S = {v0} and E = {}

• Choose the vertex v not in
S such that edge weight
from v to a vertex in S is
minimal

• Add v to S and the edge to
E if no cycle is created

Prim’s Algorithm for Finding the MST

1

32 4

6 5

10
1

5

4

3

2

6
1

1

8

v0

v

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 22

• Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
S = {v0} and E = {}

• Choose the vertex v not in
S such that edge weight
from v to a vertex in S is
minimal

• Add v to S and the edge to
E if no cycle is created

• Repeat until all vertices
have been added

Prim’s Algorithm for Finding the MST

1

32 4

6 5

10
1

5

4

3

2

6
1

1

8

v0

v

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 23

Prim’s Algorithm for Finding the MST

1

32 4

6 5

10
1

5

4

3

2

6
1

1

8

v0
• Starting from an empty

tree, T, pick a vertex, v0, at
random and initialize:
S = {v0} and E = {}

• Choose the vertex v not in
S such that edge weight
from v to a vertex in S is
minimal

• Add v to S and the edge to
E if no cycle is created

• Repeat until all vertices
have been added

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 24

Prim’s Algorithm for Finding the MST

1

32 4

6 5

10
1

5

4

3

2

6
1

1

8

v0
• Starting from an empty

tree, T, pick a vertex, v0, at
random and initialize:
S = {v0} and E = {}

• Choose the vertex v not in
S such that edge weight
from v to a vertex in S is
minimal

• Add v to S and the edge to
E if no cycle is created

• Repeat until all vertices
have been added

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 25

Prim’s Algorithm for Finding the MST

1

32 4

6 5

10
1

5

4

3

2

6
1

1

8

v0
• Starting from an empty

tree, T, pick a vertex, v0, at
random and initialize:
S = {v0} and E = {}

• Choose the vertex v not in
S such that edge weight
from v to a vertex in S is
minimal

• Add v to S and the edge to
E if no cycle is created

• Repeat until all vertices
have been added

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 26

Done!
Total cost = 1 + 3 + 4 + 1 + 1

 = 10

Prim’s Algorithm for Finding the MST

1

32 4

6 5

1

4

3

1
1

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 27

Prim’s Algorithm Analysis
Initialize connection cost of each node to ∞ and mark it unknown
Initialize connection cost of one selected node S to 0, with

Prev[S] = 0

While there are unknown nodes left in the graph

Select the unknown node N with the lowest connection cost

Mark N as known

For each unknown node A adjacent to N

If cost of (N, A) < A’s cost

A’s cost = cost of (N, A)

Prev[A] = N //store preceding node

• This is almost identical to Dijkstra’s algorithm
• Run time is O(|V|2) without heaps and O(|V| log |V| +

|E| log |V|) using binary heaps
29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 28

Put all the vertices into single node trees by themselves

Put all the edges in a priority queue with key = edge cost

Repeat until |V|-1 edges have been accepted {

Extract cheapest edge from priority queue

If it forms a cycle

ignore it

else

accept the edge – it will join two existing trees yielding
a larger tree and reducing the forest by one tree

}

Return the accepted edges (they form the spanning tree)

Kruskal’s Algorithm for Finding the MST

Select edges in order of increasing cost and accept an edge
only if it does not cause a cycle

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 29

Reducing the forest to a single tree

• Initially, there are n different single vertex
trees that partition the set of vertices

• After you have added some edges, you have
fewer (but larger) trees, which together still
partition the set of vertices

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 30

Detecting Cycles

• When do you get a cycle? If you add an
edge (u,v) where both u and v are already in
the same tree Ti, you get a cycle
› Therefore, to check for cycles, you only need to

find out if u and v are in the same tree
› If not, then the edge can be added and we union

vertices in u’s tree with vertices in v’s tree
• What is your favorite data structure for such

operations?

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 31

Kruskal’s use of Disjoint Set ADT
• In Kruskal’s algorithm, connected vertices form

equivalence classes
› each tree is a set of connected vertices
› being connected is the equivalence relation

• Initially, each vertex is in a class by itself
• As edges are added, more vertices become related

and the equivalence classes grow in size and are
reduced in number

• Until finally all the vertices are in a single
equivalence class

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 32

• Detecting cycles is easy!
• For each edge (u,v) that you’re thinking about

adding
› If Find(u) == Find(v), then u and v are in the same

class (same tree) and therefore the edge will form a
cycle, so reject it

› Otherwise, we accept the edge and do Union(u,v),
thereby indicating that all of the elements in the two
trees are now in the same tree

Kruskal’s use of Disjoint Set ADT

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 33

Kruskal initilized

V = {{a},{b},{c},{d},{e},{f},{g},{h},{i}}

All the vertices are in a forest of single element trees.
All the vertices are in a set of single element equivalence classes.

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 34

Kruskal in action
The cheapest edge is h-g

V = {{a},{b},{c},{d},{e},{f},{g,h},{i}}

Join h and g into a 2-element tree.

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 35

The next cheapest edge is c-i

Join c and i into a 2-element tree

Kruskal in action

V = {{a},{b},{c,i},{d},{e},{f},{g,h}}

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 36

The next cheapest edge is g-f

 Join g tree and f into a 3-element tree

Kruskal in action

V = {{a},{b},{c,i},{d},{e},{g,f,h}}

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 37

The next cheapest edge is a-b

Join a and b into a 2-element tree

Kruskal in action

V = {{a,b},{c,i},{d},{e},{g,f,h}}

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 38

The next cheapest edge is c-f

Kruskal in action

Join c and f trees into one 5-element tree

V = {{a,b},{c,f,g,h,i},{d},{e}}

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 39

The next cheapest edge is g-i

Find(g) is c
Find(i) is also c

Kruskal in action

V = {{a,b},{c,f,g,h,i},{d},{e}}

g-i forms a cycle. Ignore this edge.

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 40

The next cheapest edge is c-d

Kruskal in action

Join c tree and d into one 6-element tree

V = {{a,b},{c,d,f,g,h,i},{e}}

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 41

The next cheapest edge is h-i

Find(h) is c
Find(i) is c

Kruskal in action

h-i forms a cycle. Ignore this edge.

V = {{a,b},{c,d,f,g,h,i},{e}}

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 42

The next cheapest edge is a-h

Kruskal in action

V = {{a,b,c,d,f,g,h,i},{e}}

Join a and h trees into one tree

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 43

The next cheapest edge is b-c

V = {{a,b,c,d,e,f,g,h,i}}

Find(b) is c
Find(c) is c

b-c forms a cycle. Ignore this edge. Join c tree and e into one tree

The next cheapest edge is d-e

Kruskal done!

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 44

Put all the vertices into single node trees by themselves

Put all the edges in a priority queue with key = edge cost

Repeat until |V|-1 edges have been accepted {

Extract cheapest edge from priority queue

If it forms a cycle

ignore it

else

accept the edge – it will join two existing trees yielding
a larger tree and reducing the forest by one tree

}

Return the accepted edges (they form the spanning tree)

Kruskal’s Algorithm for Finding the MST

Select edges in order of increasing cost and accept an edge
only if it does not cause a cycle

O(|V|)
O(|E|)

Worst case requires |E| DeleteMin operations

O(log |E|)

total worst case running time is O(|E|· log |E|)

O(|E|)

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 45

Kruskal versus Prim

• Worst case running time
› Prim: O(|V| log |V| + |E| log |V|)
› Kruskal: O(|E| log |E|) = O(|E| log |V|) since |E|

= O(|V|2)
• Kruskal usually runs much faster than O(|E|

log |V|) in practice
› Not all edges need to be DeleteMin-ed typically
› The required |V|-1 edges are usually found

quickly
› So, Kruskal tends to be faster than Prim

