Graphs Minimum Spanning Trees

CSE 373 - Data Structures May 29, 2002

Readings and References

• Reading

> Section 9.5, Data Structures and Algorithm Analysis in C, Weiss

• Other References

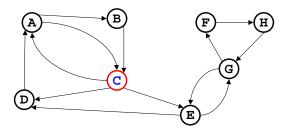
29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree

Breadth First Search (BFS)

- We used Breadth First Search for finding shortest paths in an unweighted graph
 - > Use a queue to explore neighbors of source vertex, neighbors of each neighbor, and so on: 1 edge away, two edges away, etc.
- BFS spreads out like ripples in a pond
 - > all nodes at a given distance are looked at before we go any further outward

Breadth-First Search

• <u>Basic Idea</u>: Starting at node s, find vertices that can be reached using 0, 1, 2, 3, ..., N-1 edges



3

Breadth-First Search Algorithm

- Uses a queue to track vertices that are "nearby"
- source vertex is **s**

Distance[s] = 0
Enqueue(s)
While queue is not empty
X = dequeue a vertex
For each vertex Y that is (adjacent to X and not
previously visited)
Distance[Y] = Distance[X] + 1
Previous[Y] = X
Enqueue Y

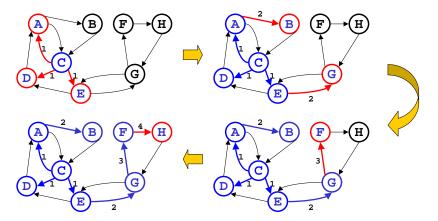
5

• Running time (same as topological sort) = O(|V| + |E|)

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree

Breadth-First Search

• BFS(C): Starting at node C, find vertices that can be reached using 0, 1, 2, 3, ..., N-1 edges



Depth First Search (DFS)

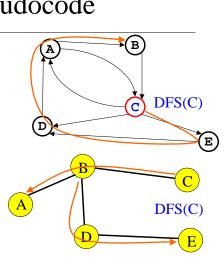
- A second way to explore all nodes in a graph
- DFS searches down one path as deep as possible
 - > When no new nodes available, it *backtracks*
 - > When backtracking, we explore side-paths that weren't taken
- DFS allows an easy recursive implementation
 So, DFS uses a stack while BFS uses a queue
 29-May-02 CSE 373 Data Structures 23 Minimum Spanning Tree 7

DFS Pseudocode

CSE 373 - Data Structures - 23 - Minimum Spanning Tree

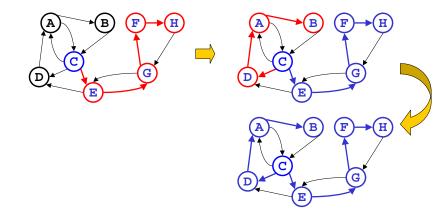
- Pseudocode for DFS: DFS(v) If v is unvisited mark v as visited print v (or process v) for each edge (v,w) DFS(w)
- Works for directed or undirected graphs
- Running time = O(|V| + |E|)

29-May-02



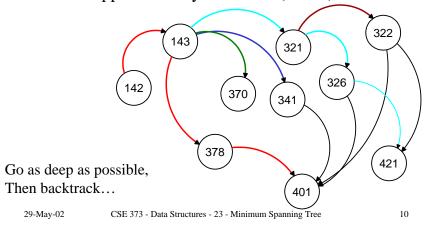
Depth-First Search

• DFS(C): searches down one path as deeply as possible, then backtracks and does it again

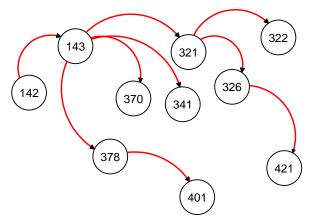


What about DFS on this graph?

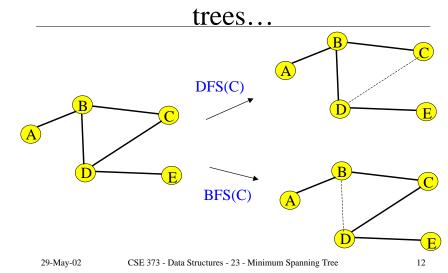
• What happens when you do DFS("142")?



We get a "spanning" tree...

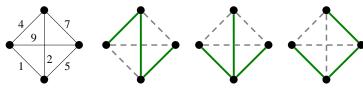


DFS and BFS may give different



Spanning Tree Definition

- *Spanning tree*: a subset of edges from a connected graph that:
 - > touches all vertices in the graph (*spans* the graph)
 - > forms a tree (is connected and contains no cycles)



• *Minimum spanning tree*: the spanning tree with the least total edge cost

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree

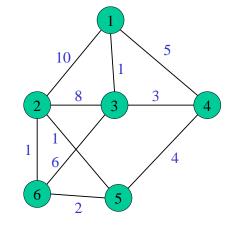
13

Minimum Spanning Tree (MST)

We are given a weighted, undirected graph G = (V, E), with weight function $w: E \rightarrow \mathbf{R}$ mapping edges to real valued weights

<u>Problem</u>: Find the minimum cost spanning tree

29-May-02



CSE 373 - Data Structures - 23 - Minimum Spanning Tree

14

Why minimum spanning trees?

- Lots of applications
- Minimize length of gas pipelines between cities
- Find cheapest way to wire a house (with minimum cable)
- Find a way to connect various routers on a network that minimizes total delay
- Etc...

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree

15

Finding Min Spanning Trees

- For any spanning tree T, inserting an edge e_{new} not in T creates a cycle
 - Removing any edge e_{old} from the cycle gives back a spanning tree
 - > If inserted edge e_{new} has a lower cost than removed edge e_{old} , we get a lower cost spanning tree
- Create a spanning tree as follows:
 - Add an edge of minimum cost that doesn't create a cycle
 - > Repeat for |V|-1 edges
- Resulting spanning tree has minimum cost:
 - > if you could replace an edge with another edge of lower cost without creating a cycle, our algorithm would have picked it

Min Spanning Tree Algorithms

• Prim

 pick lowest cost edge *connected to known* spanning tree that doesn't create a cycle and expand to include it in the tree

• Kruskal

 pick lowest cost edge not yet in a tree that doesn't create a cycle and expand to include it somewhere in the forest

29-May-02	CSE 373 - Data Structures - 23 - Minimum Spanning Tree	

Prim's Algorithm for Finding the MST

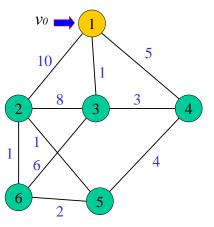
- Starting from an empty tree, *T*, pick a vertex, v₀, at random and initialize: S = {v₀} and E = {}
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal (get greedy!)
- Add v to S and the edge to E if no cycle is created
- Repeat until all vertices have been added
- 29-May-02 CSE 373 Data Structures 23 Minimum Spanning Tree

18

2

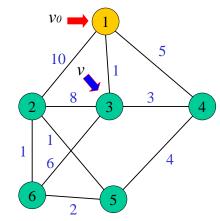
Prim's Algorithm for Finding the MST

Starting from an empty tree, *T*, pick a vertex, v₀, at random and initialize:
 S = {v₀} and E = {}

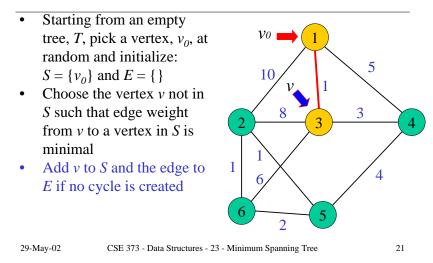


Prim's Algorithm for Finding the MST

- Starting from an empty tree, *T*, pick a vertex, v₀, at random and initialize: S = {v₀} and E = {}
- Choose the vertex *v* not in *S* such that edge weight from *v* to a vertex in *S* is minimal (greedy algo)



Prim's Algorithm for Finding the MST



Prim's Algorithm for Finding the MST

 v_0

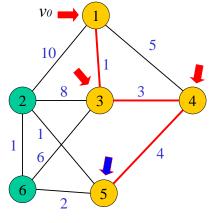
10

- Starting from an empty tree, *T*, pick a vertex, v₀, at random and initialize: S = {v₀} and E = {}
- Choose the vertex *v* not in *S* such that edge weight from *v* to a vertex in *S* is minimal
- Add v to S and the edge to E if no cycle is created
- Repeat until all vertices have been added
- 29-May-02 CSE 373 Data Structures 23 Minimum Spanning Tree

22

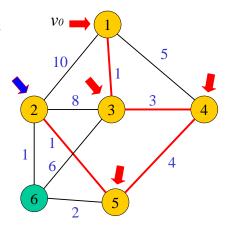
Prim's Algorithm for Finding the MST

- Starting from an empty tree, *T*, pick a vertex, v₀, at random and initialize: S = {v₀} and E = {}
- Choose the vertex *v* not in *S* such that edge weight from *v* to a vertex in *S* is minimal
- Add v to S and the edge to E if no cycle is created
- Repeat until all vertices have been added



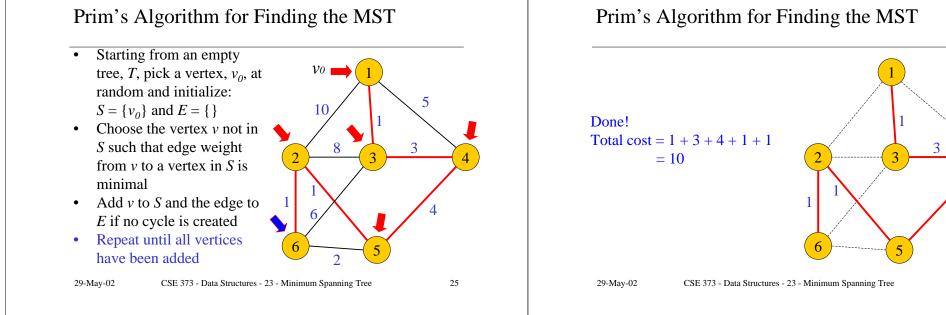
Prim's Algorithm for Finding the MST

- Starting from an empty tree, *T*, pick a vertex, v₀, at random and initialize: S = {v₀} and E = {}
- Choose the vertex *v* not in *S* such that edge weight from *v* to a vertex in *S* is minimal
- Add v to S and the edge to E if no cycle is created
- Repeat until all vertices have been added



23

29-May-02



Prim's Algorithm Analysis

Initialize connection cost of each node to ∞ and mark it unknown Initialize connection cost of one selected node S to 0, with Prev[S] = 0

While there are unknown nodes left in the graph Select the unknown node N with the lowest connection cost Mark N as known For each unknown node A adjacent to N If cost of (N, A) < A's cost A's cost = cost of (N, A) Prev[A] = N //store preceding node

- This is almost identical to Dijkstra's algorithm
- Run time is $O(|V|^2)$ without heaps and $O(|V| \log |V| + |E| \log |V|)$ using binary heaps

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree

```
27
```

Kruskal's Algorithm for Finding the MST

26

Select edges in order of increasing cost and accept an edge only if it does not cause a cycle

Put all the vertices into single node trees by themselves
Put all the edges in a priority queue with key = edge cost
Repeat until |V|-1 edges have been accepted {
 Extract cheapest edge from priority queue
 If it forms a cycle
 ignore it
 else
 accept the edge - it will join two existing trees yielding
 a larger tree and reducing the forest by one tree
}
Return the accepted edges (they form the spanning tree)
29-May-02
 CSE 373 - Data Structures - 23 - Minimum Spanning Tree
 28

Reducing the forest to a single tree

- Initially, there are *n* different single vertex trees that partition the set of vertices
- After you have added some edges, you have fewer (but larger) trees, which together still partition the set of vertices

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree

Detecting Cycles

- When do you get a cycle? If you add an edge (u,v) where both u and v are already in the same tree T_i, you get a cycle
 - Therefore, to check for cycles, you only need to <u>find</u> out if u and v are in the same tree
 - > If not, then the edge can be added and we <u>union</u> vertices in u's tree with vertices in v's tree
- What is your favorite data structure for such operations?
- 29-May-02 CSE 373 Data Structures 23 Minimum Spanning Tree

30

Kruskal's use of Disjoint Set ADT

- In Kruskal's algorithm, connected vertices form equivalence classes
 - > each tree is a set of connected vertices
 - > *being connected* is the equivalence relation
- Initially, each vertex is in a class by itself
- As edges are added, more vertices become related and the equivalence classes grow in size and are reduced in number
- Until finally all the vertices are in a single equivalence class

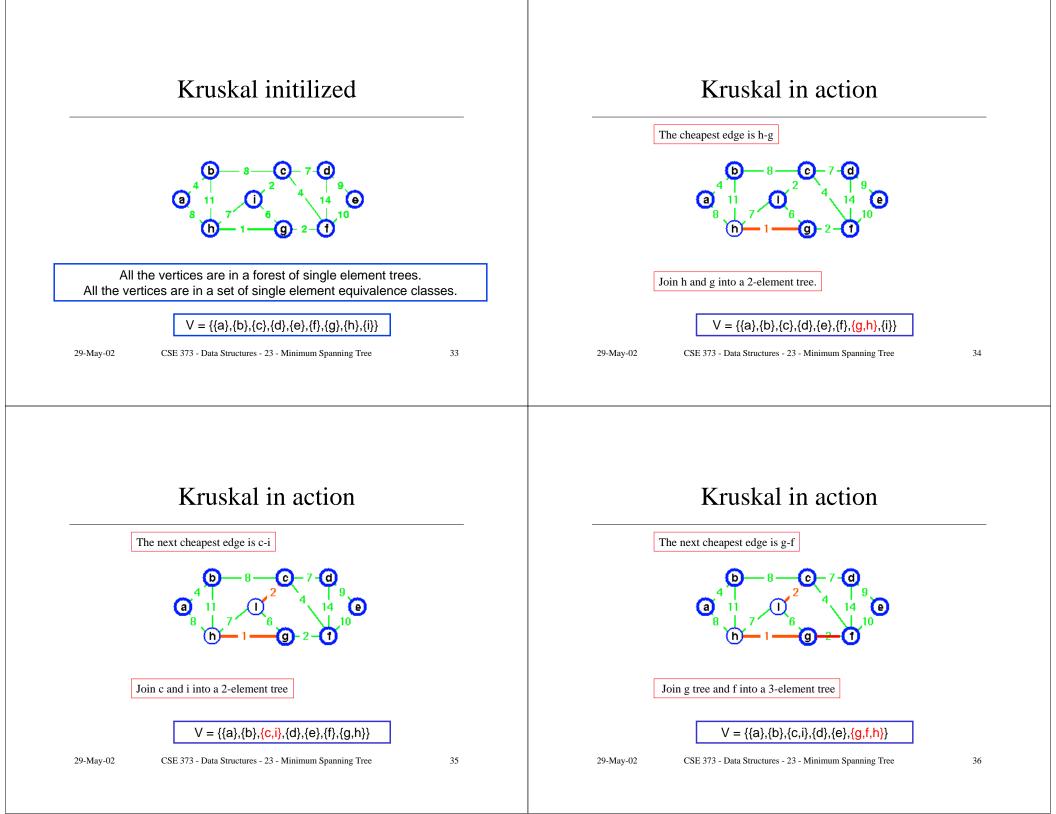
29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree

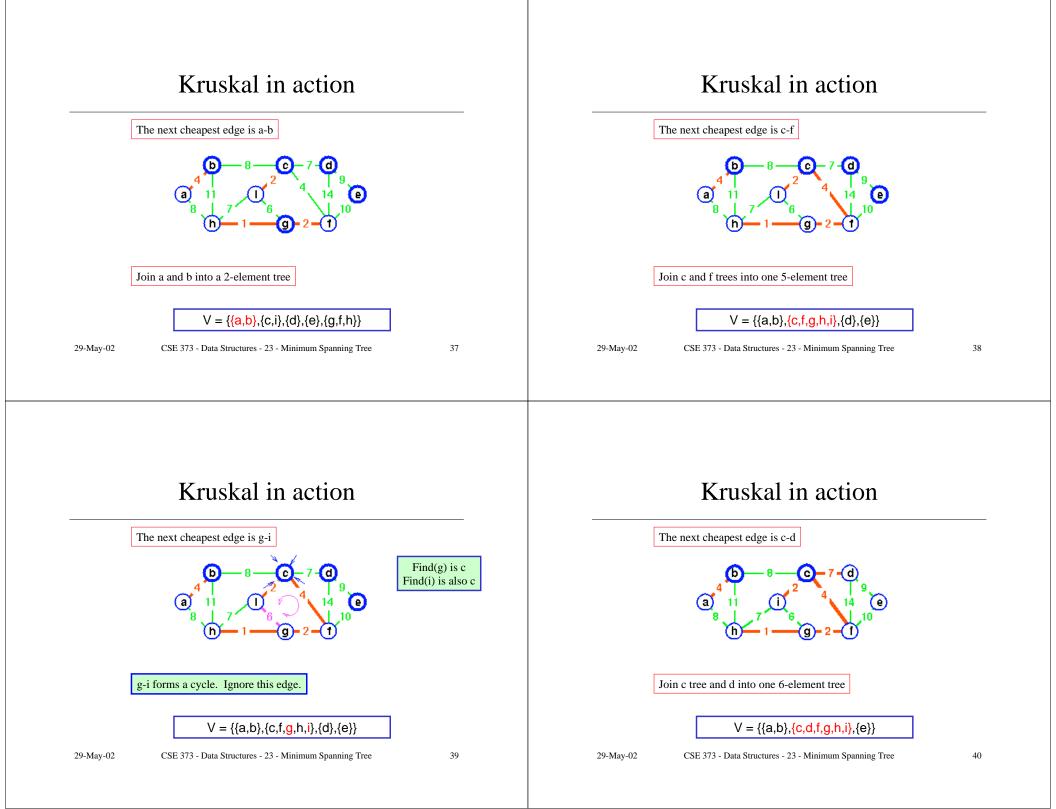
31

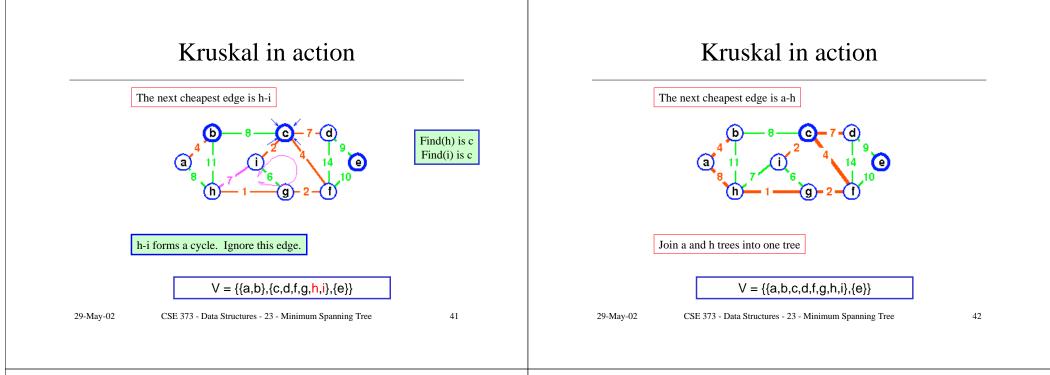
29

Kruskal's use of Disjoint Set ADT

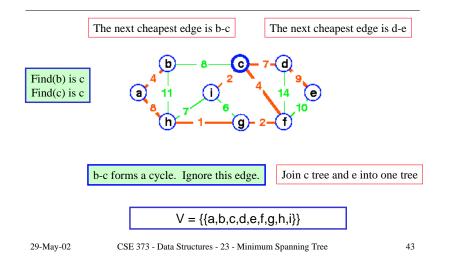
- Detecting cycles is easy!
- For each edge (u,v) that you're thinking about adding
 - > If Find(u) == Find(v), then u and v are in the same class (same tree) and therefore the edge will form a cycle, so reject it
 - Otherwise, we accept the edge and do Union(u,v), thereby indicating that all of the elements in the two trees are now in the same tree







Kruskal done!



Kruskal's Algorithm for Finding the MST

Select edges in order of increasing cost and accept an edge only if it does not cause a cycle

Put all the vertices into single node trees by themselves	O(V)		
Put all the edges in a priority queue with key = edge cost	O(E)		
Repeat until $ V -1$ edges have been accepted { $O(E)$			
Extract cheapest edge from priority queue O(log			
If it forms a cycle			
ignore it Worst case requires E DeleteMin operati	ons		
else			
accept the edge - it will join two existing trees yielding			
a larger tree and reducing the forest by one tree			
}			
Return the accepted edges (they form the spanning tree)			
total worst case running time is $O(E \cdot \log E)$			
29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree	44		

Kruskal versus Prim

- Worst case running time
 - > Prim: $O(|V| \log |V| + |E| \log |V|)$
 - > Kruskal: $O(|E| \log |E|) = O(|E| \log |V|)$ since $|E| = O(|V|^2)$
- Kruskal usually runs much faster than O(|*E*| log |*V*|) in practice
 - > Not all edges need to be DeleteMin-ed typically
 - > The required |V|-1 edges are usually found quickly
 - > So, Kruskal tends to be faster than Prim

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree