Graph Paths

CSE 373 - Data Structures
 May 24, 2002

Readings and References

- Reading
> Section 9.3, Data Structures and Algorithm Analysis in C, Weiss
- Other References

Some slides based on: CSE 326 by S. Wolfman, 2000

Path

- A path is a list of vertices $\left\{\mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ such that $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}+\mathbf{1}}\right)$ is in \mathbf{E} for all $\mathbf{0} \leq \mathbf{i}<\mathbf{n}$.

Simple Paths and Cycles

- A simple path repeats no vertices
> eg: \{Seattle, Salt Lake City, San Francisco\}
- A cycle is a path that starts and ends at the same vertex:
, \{Seattle, Salt Lake City, San Francisco, Seattle\}
- A simple cycle is a cycle that repeats no vertices and the first vertex is also the last
- A directed acyclic graph (DAG) is a directed graph with no cycles

Connected

- G is connected if there is a path between every pair of distinct vertices in the graph
- A graph which is not connected is the union of two or more connected subgraphs
> the subgraphs partition the graph G
> the subgraphs are the connected components of G
> note that the connected components are not connected to each other, but are themselves connected graphs

Undirected Connected Graph

Connected Components of G

Path cost and Path length

- Path cost: the sum of the costs of each edge
- Path length: the number of edges in the path
> Path length is the unweighted path cost (each edge =1)

Shortest Path Problems

- Given a graph $\mathrm{G}=(V, E)$ and a "source" vertex s in V, find the minimum cost paths from s to every vertex in V
- Many variations:
> unweighted vs. weighted
> cyclic vs. acyclic
> pos. weights only vs. pos. and neg. weights
> etc

Why study shortest path problems?

- Traveling on a budget: What is the cheapest airline schedule from Seattle to city X?
- Optimizing routing of packets on the internet:
> Vertices are routers and edges are network links with different delays. What is the routing path with smallest total delay?
- Shipping: Find which highways and roads to take to minimize total delay due to traffic

Unweighted Shortest Path Problem

Problem: Given a "source" vertex s in an unweighted graph $\mathrm{G}=(V, E)$, find the shortest path from s to all vertices in G

Breadth-First Search Solution

- Basic Idea: Starting at node s, find vertices that can be reached using $0,1,2,3, \ldots, \mathrm{~N}-1$ edges (works even for cyclic graphs!)

Breadth-First Search Algorithm

- Uses a queue to track vertices that are "nearby"
- source vertex is \mathbf{s}

```
Distance[s] = 0
Enqueue(s)
While queue is not empty
X = dequeue a vertex
For each vertex Y that is (adjacent to X and not
previously visited)
Distance[Y] = Distance[X] + 1
Previous[Y] = X
Enqueue Y
```

- Running time (same as topological sort) $=\mathbf{O}(|V|+|E|)$

What if edges have weights?

- Breadth First Search does not work anymore
, minimum cost path may have more edges than minimum length path

Shortest path from
C to A:
$\mathrm{C} \rightarrow \mathrm{A}(\operatorname{cost}=9)$
Minimum Cost
Path $=\mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{D} \rightarrow \mathrm{A}$ (cost $=8$)

Dijkstra's Algorithm for Weighted Shortest Path

- Classic algorithm for solving shortest path in weighted graphs (without negative weights)
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Each vertex has a cost for path from initial vertex
- Greedy choice - always expand to the least cost vertex
> a vertex already visited may be updated if a better path to it is found before it is added to the distinguished set

Dijkstra's Shortest Path Algorithm

- Initialize the cost of initial node to 0 , and all the rest of the nodes to ∞
- Initialize set S to be \varnothing
- While there are nodes left in the graph but not in S
> Select the node K with the lowest cost that is not in S and identify the node as now being in S
> for each node A adjacent to K
- if $(\operatorname{cost}(\mathrm{K})+\operatorname{cost}(\mathrm{K}, \mathrm{A})$ < A's currently known cost
$-\operatorname{set} \operatorname{cost}(\mathrm{A})=\operatorname{cost}(\mathrm{K})+\operatorname{cost}(\mathrm{K}, \mathrm{A})$
- set $\operatorname{previous}(A)=K$ so that we can remember the path

A weighted directed graph

Dijkstra example

	$S ?$	d_{v}	P																		
v_{1}	$*$	0	-	$*$	0	-	$*$	0	-	$*$	0	-	$*$	0	-	$*$	0	-	$*$	0	-
v_{2}		2	v_{1}		2	v_{1}	$*$	2	v_{1}												
v_{3}		∞			3	v_{4}		3	v_{4}		3	v_{4}	$*$	3	v_{4}	$*$	3	v_{4}	$*$	3	v_{4}
v_{4}		1	v_{1}	$*$	1	v_{1}															
v_{5}		∞		3	v_{4}		3	v_{4}	$*$	3	v_{4}										
v_{6}		∞		9	v_{4}		9	v_{4}		9	v_{4}		8	v_{3}		6	v_{7}	$*$	6	v_{7}	
v_{7}	∞			5	v_{4}	$*$	5	v_{4}	$*$	5	v_{4}										

Analysis of Dijkstra's Algorithm

While there are nodes left in the graph but not in S

Select the node K with the lowest cost that is not in S and identify the node as now being in S for each node A adjacent to K if $(\operatorname{cost}(\mathrm{K})+\operatorname{cost}(\mathrm{K}, \mathrm{A})$ < A's currently known cost set $\operatorname{cost}(\mathrm{A})=\operatorname{cost}(\mathrm{K})+\operatorname{cost}(\mathrm{K}, \mathrm{A})$ set $\operatorname{previous}(\mathrm{A})=\mathrm{K}$ so that we can remember the path

Total time $=|V|(\mathrm{O}(|V|))+\mathrm{O}(|E|)=\mathrm{O}\left(|V|^{2}+|E|\right)$
Dense graph: $|E|=\Theta\left(|V|^{2}\right) \rightarrow$ Total time $=\mathrm{O}\left(|V|^{2}\right)=\mathrm{O}(|E|)$
Sparse graph: $|E|=\Theta(|V|) \rightarrow$ Total time $=\mathrm{O}\left(|V|^{2}\right)=\mathrm{O}\left(|E|^{2}\right)$
Quadratic! Can we do better?

Analysis of Dijkstra's Algorithm

Yes! Use a priority queue to store vertices with key $=$ cost
$|V|$ times:
Select the unknown node N with the lowest cost
$|E|$ times:
deleteMin
A 's cost $=N$'s cost $+\operatorname{cost}$ of (N, A)

Total run time $=\mathrm{O}(|V| \log |V|+|E| \log |V|)$

Does It Always Work?

- Dijkstra's algorithm is an example of a greedy algorithm
- Greedy algorithms always make choices that currently seem the best
> Short-sighted - no consideration of long-term or global issues
> Locally optimal does not always mean globally optimal
- In Dijkstra's case - choose the least cost node, but what if there is another path through other vertices that is cheaper?

"Cloudy" Proof

If the path to \mathbf{G} is the next shortest path, the path to \mathbf{P} must be at least as long. Note - no negative path weights! Therefore, any path through \mathbf{P} to \mathbf{G} cannot be shorter!

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path Proof is by induction on the \# of nodes in the cloud:
> Base case: Initial cloud is just the source with shortest path 0
> Inductive hypothesis: cloud of k-1 nodes all have shortest paths
> Inductive step: choose the least cost node $\mathrm{G} \rightarrow$ has to be the shortest path to G (previous slide). Add $\mathrm{k}^{\text {th }}$ node G to the cloud

