Graph Paths

CSE 373 - Data Structures May 24, 2002

Readings and References

- Reading
 - > Section 9.3, Data Structures and Algorithm Analysis in C, Weiss
- Other References

Some slides based on: CSE 326 by S. Wolfman, 2000

CSE 373 - Data Structures - 21 - Short Paths

Path

A path is a list of vertices {v₁, v₂,..., v_n} such that (v_i, v_{i+1}) is in E for all 0 ≤ i < n.

CSE 373 - Data Structures - 21 - Short Paths

Simple Paths and Cycles

- A *simple path* repeats no vertices
 - > eg: {Seattle, Salt Lake City, San Francisco}
- A *cycle* is a path that starts and ends at the same vertex:
 - > {Seattle, Salt Lake City, San Francisco, Seattle}
- A *simple cycle* is a cycle that repeats no vertices and the first vertex is also the last
- A *directed acyclic graph* (DAG) is a directed graph with no cycles

20-May-02

Connected

- G is *connected* if there is a path between every pair of distinct vertices in the graph
- A graph which is not connected is the union of two or more connected subgraphs
 - > the subgraphs partition the graph G
 - > the subgraphs are the *connected components* of G
 - > note that the connected components are *not* connected to each other, but are themselves connected graphs

CSE 373 - Data Structures - 21 - Short Paths

Undirected Connected Graph

Connected Components of G

Path cost and Path length

- *Path cost*: the sum of the costs of each edge
- *Path length*: the number of edges in the path
 - > Path length is the unweighted path cost (each edge = 1)

Shortest Path Problems

- Given a graph G = (V, E) and a "source" vertex *s* in *V*, find the <u>minimum cost paths</u> from *s* to every vertex in *V*
- <u>Many variations</u>:
 - > unweighted vs. weighted
 - > cyclic vs. acyclic
 - > pos. weights only vs. pos. and neg. weights
 - > etc

Why study shortest path problems?

- Traveling on a budget: What is the cheapest airline schedule from Seattle to city X?
- Optimizing routing of packets on the internet:
 - > Vertices are routers and edges are network links with different delays. What is the routing path with smallest total delay?
- Shipping: Find which highways and roads to take to minimize total delay due to traffic

Unweighted Shortest Path Problem

<u>Problem</u>: Given a "source" vertex *s* in an unweighted graph G = (V,E), find the shortest path from *s* to all vertices in G

CSE 373 - Data Structures - 21 - Short Paths

Breadth-First Search Solution

• <u>Basic Idea</u>: Starting at node s, find vertices that can be reached using 0, 1, 2, 3, ..., N-1 edges (works even for cyclic graphs!)

Breadth-First Search Algorithm

- Uses a queue to track vertices that are "nearby"
- source vertex is **s**

• Running time (same as topological sort) = O(|V| + |E|)

What if edges have weights?

• Breadth First Search does not work anymore > minimum *cost* path may have more edges than minimum *length* path

CSE 373 - Data Structures - 21 - Short Paths

Dijkstra's Algorithm for Weighted Shortest Path

- Classic algorithm for solving shortest path in weighted graphs (without negative weights)
- A *greedy* algorithm (irrevocably makes decisions without considering future consequences)
- Each vertex has a cost for path from initial vertex
- Greedy choice always expand to the least cost vertex
 - a vertex already visited may be updated if a better path to it is found before it is added to the distinguished set

Dijkstra's Shortest Path Algorithm

- Initialize the cost of initial node to 0, and all the rest of the nodes to ∞
- Initialize set S to be \emptyset
- While there are nodes left in the graph but not in S
 - Select the node K with the lowest cost that is not in S and identify the node as now being in S
 - > for each node A adjacent to K
 - if (cost(K)+cost(K,A) < A's currently known cost
 - set cost(A) = cost(K) + cost(K,A)
 - set previous(A) = K so that we can remember the path

A weighted directed graph

CSE 373 - Data Structures - 21 - Short Paths

Dijkstra example

	<i>S</i> ?	d_v	P	<i>S</i> ?	d_v	Р	S?	d_v	Р	<i>S</i> ?	d_v	Р	<i>S</i> ?	d_v	Р	S?	d_v	P	<i>S</i> ?	d_v	P
v_1	*	0	Ι	*	0	_	*	0	_	*	0	_	*	0	_	*	0	_	*	0	_
v_2		2	v_1		2	v_1	*	2	v_1	*	2	v_1	*	2	v_1	*	2	v_1	*	2	<i>v</i> ₁
v_3		∞			3	v_4		3	v_4		3	v_4	*	3	v_4	*	3	v_4	*	3	v_4
v_4		1	v_1	*	1	v_1	*	1	v_1	*	1	v_1	*	1	v_1	*	1	v_1	*	1	<i>v</i> ₁
v_5		∞			3	v_4		3	v_4	*	3	v_4	*	3	v_4	*	3	v_4	*	3	v_4
v_6		∞			9	v_4		9	v_4		9	v_4		8	v_3		6	v_7	*	6	<i>v</i> ₇
v_7		∞			5	v_4		5	v_4		5	v_4		5	v_4	*	5	v_4	*	5	v_4

Analysis of Dijkstra's Algorithm

Total time = $|V| (O(|V|)) + O(|E|) = O(|V|^2 + |E|)$ Dense graph: $|E| = \Theta(|V|^2) \rightarrow$ Total time = $O(|V|^2) = O(|E|)$ Sparse graph: $|E| = \Theta(|V|) \rightarrow$ Total time = $O(|V|^2) = O(|E|^2)$

Quadratic! Can we do better?

20-May-02

CSE 373 - Data Structures - 21 - Short Paths

Analysis of Dijkstra's Algorithm

Yes! Use a priority queue to store vertices with key = cost

|V| times:Select the unknown node N with the lowest cost|E| times:A's cost = N's cost + cost of (N, A)475

Total run time = $O(|V| \log |V| + |E| \log |V|)$

6

Does It Always Work?

- Dijkstra's algorithm is an example of a greedy algorithm
- Greedy algorithms always make choices that currently seem the best
 - > Short-sighted no consideration of long-term or global issues
 - > Locally optimal does not always mean globally optimal
- In Dijkstra's case choose the least cost node, but what if there is another path through other vertices that is cheaper? CSE 373 - Data Structures - 21 - Short Paths 20-May-02

If the path to **G** is the next shortest path, the path to **P** must be at least as long. Note - no negative path weights! Therefore, any path through **P** to **G** cannot be shorter! 20-May-02 CSE 373 - Data Structures - 21 - Short Paths

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path Proof is <u>by induction</u> on the # of nodes in the cloud:

- > Base case: Initial cloud is just the source with shortest path 0
- Inductive hypothesis: cloud of k-1 nodes all have shortest paths
- > Inductive step: choose the least cost node $G \rightarrow$ has to be the shortest path to G (previous slide). Add kth node G to the cloud